Java toString的性能优化方案比较

谁在关心toString的性能?没有人!除非当你有大量的数据在批量处理,使用toString产生了许多日志。然后,你去调查为何如此之慢,才意识到大部分的toString方法使用的是introspection,它其实是可以被优化的。

不过,首先让我们一起看看Javadoc回忆下Object.toString
当做什么:“返回该对象的字符串表示,该结果必须简明但表述详实易懂。建议所有子类重写该方法”。这里最有趣的就是“简明”和“详实”。我们所钟爱的
IDE们常常为我们生成equals/hashcode/toString这些方法,且我们通常不再去管它们。此外,这些IDE们提供了许多方式来生成我
们自己的toString:字符串连接(使用+号)、StringBuffer、StringBuilder、
ToStringBuilder(Commons Lang 3)、 ReflectionToStringBuilder (Commons Lang
3)、Guava或者Objects.toString……该选哪一个?

如果你想知道哪种toString的实现方式会更高效,不要去猜测,而是去测试!这时你需要用到JMH。我曾在博客上写过有关它的文章,所以这里不再细谈JMH如何工作的细节。

在该基准测试中,我创建了一个复杂的对象图(使用继承、集合等等),而且我使用到了由IDE生成的所有不同toString的实现方式,来看看哪一

种性能更好。就一条经验法则:简洁。无论你使用哪种技术(如下),为一些属性或者所有属性(包括继承、依赖或者集合)生成toSting,对性能会有巨大
的影响。

用 + 连接字符串

让我们先从最高效的方法开始:用 + 连接字符串。曾经这种被认为是邪恶的使用方式(“不要用 + 连接字符串!!!”),已变得很酷且高效!如今JVM编译器(大部分时候)会把 + 编译成一个string builder。所以,不用犹豫,用它就是了。唯一的缺点是null值不会被处理,你需要自己来处理它。

看看下面注解中使用JMH统计出来的平均性能。

public String toString() {
return "MyObject{" +
   "att1='" + att1 + ''' +
   ", att2='" + att2 + ''' +
   ", att3='" + att3 + ''' +
   "} " + super.toString();
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (140772,314, 142075,167, 143844,717)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = (140772,314, 142075,167, 143844,717)

用Objects.toString连接字符串

Java SE 7带来了Objects类和它的一些静态方法。Objects.toString的优点是它可以处理null值,甚至可以给null设置默认值。其性能与上一个相比略低,但是null值可以被处理:

public String toString() {
return "MyObject{" +
   "att1='" + Objects.toString(att1) + ''' +
   ", att2='" + Objects.toString(att2) + ''' +
   ", att3='" + Objects.toString(att3) + ''' +
   "} " + super.toString();
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (138790,233, 140791,365, 142031,847)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = (138790,233, 140791,365, 142031,847)

StringBuilder

另一种技术是使用StringBuilder。很难讲清哪一种技术性能更好。如我前面所说,我已经使用了复杂的对象图(att1、 att2和att3变量的命名是为了可读性),JMH给出了或多或少相同的结果。后面这三种技术在性能方面非常接近。

public String toString() {
final StringBuilder sb = new StringBuilder("MyObject{");
sb.append("att1='").append(att1).append(''');
sb.append(", att2='").append(att2).append(''');
sb.append(", att3='").append(att3).append(''');
sb.append(super.toString());
return sb.toString();
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (96073,645, 141463,438, 146205,910)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = (96073,645, 141463,438, 146205,910)

Guava

Guava有一些helper类:其中一个可以帮助你生成toString。这比纯JDK API性能要差一点,但是它可以提供给你一些额外的服务(我这里指的Guava):

public String toString() {
return Objects.toStringHelper(this)
.add("att1", att1)
.add("att2", att2)
.add("att3", att3)
.add("super", super.toString()).toString();
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (97049,043, 110111,808, 114878,137)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = (97049,043, 110111,808, 114878,137)

Commons Lang3

Commons Lang3有一些技术来生成toString:从builder到 introspector。如同你猜测到的,introspection更容易使用,代码量更少,但是性能比较糟糕:

public String toString() {
return new ToStringBuilder(this)
.append("att1", att1)
.append("att2", att2)
.append("att3", att3)
.append("super", super.toString()).toString();
}

// Average performance with JMH (ops/s)
// (min, avg, max) = ( 73510,509,  75165,552,  76406,370)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = ( 73510,509,  75165,552,  76406,370)

public String toString() {
    return ToStringBuilder.reflectionToString(this, ToStringStyle.SHORT_PREFIX_STYLE);
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (31803,224, 34930,630, 35581,488)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) =(31803,224, 34930,630, 35581,488)

public String toString() {
    return ReflectionToStringBuilder.toString(this);
}

// Average performance with JMH (ops/s)
// (min, avg, max) = (14172,485, 23204,479, 30754,901)
// 使用JMH测出来的平均性能
// (最小, 平均, 最大) = (14172,485, 23204,479, 30754,901)

总结

如今有了JVM优化,我们可以安全使用+来连接字符串(及使用Objects.toString来处理null)。有了内置到JDK的实用工具类,
不需要外部框架来处理null值。因此,与本文中讲述的其它技术相比,开箱即用的JDK拥有更好的性能(如果你有其它的框架/技术,请留下评论我来试试
看)。

作为总结,下面是一个从JMH得到的平均性能数据表格(从最高效依次递减)


使用技术


平均操作次数/秒


用’+’连接字符串


142.075,167


String builder


141.463,438


Objects.toString


140.791,365


Guava


110.111,808


ToStringBuilder (append)


75.165,552


ToStringBuilder (reflectionToString)


34.930,630


ReflectionToStringBuilder


23.204,479

再说一次,如果你经常调用toString方法,这是很重要的。否则,性能就真不是个事。

来源:51CTO

时间: 2024-10-29 22:52:30

Java toString的性能优化方案比较的相关文章

Mysql性能优化方案分享_Mysql

网上有不少mysql 性能优化方案,不过,mysql的优化同sql server相比,更为麻烦,同样的设置,在不同的环境下 ,由于内存,访问量,读写频率,数据差异等等情况,可能会出现不同的结果,因此简单地根据某个给出方案来配置mysql是行不通的,最好能使用status信息对mysql进行具体的优化. mysql> show global status; 可以列出MySQL服务器运行各种状态值,另外,查询MySQL服务器配置信息语句:mysql> show variables; 一.慢查询 m

Nginx服务器配置性能优化方案_nginx

高层的配置nginx.conf文件中,Nginx中有少数的几个高级配置在模块部分之上. user www-data; pid /var/run/nginx.pid; worker_processes auto; worker_rlimit_nofile 100000; user和pid应该按默认设置 - 我们不会更改这些内容,因为更改与否没有什么不同. worker_processes 定义了nginx对外提供web服务时的worker进程数.最优值取决于许多因素,包括(但不限于)CPU核的数量

mysql 性能优化方案

网上有不少mysql 性能优化方案,不过,mysql的优化同sql server相比,更为麻烦与负责,同样的设置,在不同的环境下 ,由于内存,访问量,读写频率,数据差异等等情况,可能会出现不同的结果,因此简单地根据某个给出方案来配置mysql是行不通的,最好能使用status信息对mysql进行具体的优化,网上找了一篇文章,分页分得乱七八糟的,只能转到博客. mysql> show global status; 可以列出mysql服务器运行各种状态值,另外,查询mysql服务器配置信息语句: m

实例jie如何提高Java Web 服务性能优化实践

本文介绍如何提升 Java Web 服务性能,主要介绍了三种方法:一是采用 Web 服务的异步调用,二是引入 Web 服务批处理模式,三是压缩 SOAP 消息.重点介绍在编程过程中如何使用异步 Web 服务以及异步调用和同步调用的差异点.本文还示范了如何在项目中使用以上三种方法,以及各种方法所适合的应用场景. Java Web 服务简介 Web 服务是一种面向服务架构的技术,通过标准的 Web 协议提供服务,目的是保证不同平台的应用服务可以互操作.Web 服务(Web Service)是基于 X

Java程序的性能优化StringBuffer与Vector

程序|性能|优化 ? Java使得复杂应用的开发变得相对简单.毫无疑问,它的这种易用性对Java的大范围流行功不可没.然而,这种易用性实际上是一把双刃剑.一个设计良好的Java程序,性能表现往往不如一个同样设计良好的C++程序.在Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身.养成好的代码编写习惯非常重要,比如正确地.巧妙地运用java.lang.String类和java.util.Vector类,它能够显著地提高程序的性能.下面我们就来具体地分析一下这方面的问题.

Java虚拟机JVM性能优化(二):编译器_java

本文将是JVM 性能优化系列的第二篇文章(第一篇:传送门),Java 编译器将是本文讨论的核心内容. 本文中,作者(Eva Andreasson)首先介绍了不同种类的编译器,并对客户端编译,服务器端编译器和多层编译的运行性能进行了对比.然后,在文章的最后介绍了几种常见的JVM优化方法,如死代码消除,代码嵌入以及循环体优化. Java最引以为豪的特性"平台独立性"正是源于Java编译器.软件开发人员尽其所能写出最好的java应用程序,紧接着后台运行的编译器产生高效的基于目标平台的可执行代

JAVA程序的性能优化

程序|性能|优化   1 使用非阻塞I/O 版本较低的JDK不支持非阻塞I/O API.为避免I/O阻塞,一些应用采用了创建大量线程的办法(在较好的情况下,会使用一个缓冲池).这种技术可以在许多必须支持并发I/O流的应用中见到,如Web服务器.报价和拍卖应用等.然而,创建Java线程需要相当可观的开销. JDK 1.4引入了非阻塞的I/O库(java.nio).如果应用要求使用版本较早的JDK,在这里有一个支持非阻塞I/O的软件包. 2 慎用异常 异常对性能不利.抛出异常首先要创建一个新的对象.

iSCSI性能瓶颈及性能优化方案

iSCSI性能瓶颈 &http://www.aliyun.com/zixun/aggregation/37954.html">nbsp;   iSCSI协议建立在传统的TCP/IP协议之上,在进行实际数据传输时,其传输系统性能受限于TCP/IP协议栈负载及以太网最大带宽,另外iSCSI协议层也会额外增加一些负载开销,在实际应用中,iSCSI数据传输性能仍然存在瓶颈.以发送端的写操作为例,一次完整的iSCSI协议数据传输包括数据封装.数据拷贝.数据传输三个步骤. 1.数据封装 iSC

Java虚拟机JVM性能优化(一):JVM知识总结_java

Java应用程序是运行在JVM上的,但是你对JVM技术了解吗?这篇文章(这个系列的第一部分)讲述了经典Java虚拟机是怎么样工作的,例如:Java一次编写的利弊,跨平台引擎,垃圾回收基础知识,经典的GC算法和编译优化.之后的文章会讲JVM性能优化,包括最新的JVM设计--支持当今高并发Java应用的性能和扩展. 如果你是一个开发人员,你肯定遇到过这样的特殊感觉,你突然灵光一现,所有的思路连接起来了,你能以一个新的视角来回想起你以前的想法.我个人很喜欢学习新知识带来的这种感觉.我已经有过很多次这样