文章讲的是DIY Hadoop大数据环境的5大陷阱,虽然Hadoop可以运行在廉价的商品计算机硬件,且用户很容易添加节点,但是它有一些细节是很昂贵的,尤其是你在生产环境中运行Hadoop。
甲骨文公司大数据产品经理Jean-Pierre Dijck称:“IT部门认为‘我已经有服务器,我还可以买到便宜的服务器,我也有人员,所以我们不用花多少钱就可以构建自己的Hadoop集群’,这当然是一件好事,但是IT部门在部署时会发现这里会有很多他们没有预料到的额外开销。”
Dijcks列举了IT领导在DIY Hadoop集群时的5个常见错误:
1.他们试图以廉价的方式构建Hadoop
很多IT部门不清楚Hadoop集群应该完成什么使命(除了分析某些类型的数据),所以他们会购买尽可能便宜的服务器。
“Hadoop被认为是可自愈的,所以当服务器的一个节点出现故障,构不成大问题,”Dijcks称,“但如果你购买廉价的服务器,很多节点出现故障那么你就要花更多时间来修复硬件,如果一大堆节点都不运行了,这就会造成大问题。”
如果你的Hadoop集群只是实验,那么以上这些可能不是问题。然而,很多实验性项目通常最后都会进入生产环境。IT部门认为,“我们已经投入了大量的时间,我们已经做了很多工作,现在我们需要将其投入生产,”Dijcks说道,“在实验期间,如果环境出现问题,只要重新启动即可,但在生产环境,集群需要能够抵御硬件故障、人为交互故障以及任何可能发生的事情。”
Forrester公司在其2016年第二季度报告“大数据Hadoop优化系统”中指出,我们需要大量时间和精力用于安装、配置、调试、升级和监控通用Hadoop平台的基础设施,而预配置Hadoop优化系统可提供更快的时间价值、降低成本、最小化管理工作以及模块化扩展功能。
2.太多“厨师”
大多数IT部门将自己分为软件、硬件和网络组,而Hadoop集群跨越了这些分组,所以DIY Hadoop集群最终会成为很多有说服力的“厨师”的产物。
Dijcks称:“在这种情况中,你有一个食谱来参考,但负责不同领域的人并不会完全遵循食谱,因为他们喜欢与食谱要求略有不同的做法。“所以最终,Hadoop集群不会按照预期那样运行。
在进行故障排除后,系统应该能够启动以及让IT运营人员在生产环境中运行,但Dijcks称:“这是另一个学习曲线开始的地方,他们可能不熟悉Hadoop集群,你会看到很多人为错误、停机时间等一系列问题。”
3.他们没有意识到Hadoop DIY项目是特洛伊木马
在Hadoop集群转移到生产环境后,企业通常会发现他们需要安排专门的工作人员来保持其运行。Dijcks称:“当然,这个工作人员的大部分时间花费在维护上,而不是创新。”此外,这名工作人员还需要了解Hadoop系统。
他警告道:“你不能期望人们在很短时间内变成Hadoop专家。”即使你雇佣经验丰富的工作人员,但IT环境差异性很大--DIY Hadoop集群组件也是如此。因此,在你特定环境中的所有配置、连接和相互关系都需要花时间来了解。
4. 他们低估了更新的复杂性和频率
新版Hadoop(例如来自Cloudera和Hortonworks)每三个月发布一次,这些通常包含新特性、新功能、更新、漏洞修复等。
“除了保持Hadoop集群运行所需的所有人类操作外,每三个月都会有新的升级版本,”Dijcks称,“你完成升级的那一刻,你必须开始规划下一次升级。这相当复杂,所以有些人开始跳过更新。”即使你跳过几次更新,最终你还是会需要更新,例如从5.4升级到5.7。
虽然Cloudera和Hortonworks会尝试测试尽可能多的场景,“他们不能测试你特定操作系统版本或者对特定工作操作的影响,”Dijcks称,“你的环境可能有思科路由器或者Red Hat操作系统或者IBM硬件,同时,如果这个集群正用于大数据生产项目,而你需要更新时,就有可能会制造出明显的停机时间。”
5. 他们没有准备好应对安全挑战
在Hadoop早期,安全没有被视为一个大问题,因为集群仍位于防火墙后面。而现在,安全已经成为最大的问题。
目前Kerberos身份验证已经内置到Hadoop来解决这些问题,但有些IT企业不知道如何处理此协议,“整合Kerberos到企业的Active Directory非常复杂,”他表示,“你需要在Active Directory和一系列组件之间进行非常多集成工作。且这方面的文档非常少,最要命的是这涉及到安全管理员和IT其他团队,这些人员几乎是使用完全不同的语言。”
有些IT部门最终会与Cloudera、Hortonworks或其他第三方签署合同以保护他们的DIY Hadoop集群。“这需要一些时间才能完成设置、测试等工作,”Dijcks称,“然后每过三个月,你都需要重新做一次,以确保应用和配置等一切的正常运行。”
作者: 邹铮译
来源:IT168
原文链接:DIY Hadoop大数据环境的5大陷阱