大数据与人的主体性

点击、流量的多少并不能客观地概括“我们是谁”,而是关于希望与诉求的一种个性化的展现。目前针对“大数据”的定义给人的印象是缺乏主体性,我们不能满足于数据的产生与人有关,更要意识到,数据本身就是由人创造。这就是人的数据。

我们所处的时代还有一个比较拗口的名字,叫做“拍字节时代”(petabyte era),所谓“拍字节”即千万亿字节或千兆字节,属于较高级的储存单位。人们不仅关注存储介质的庞大体量,也在谈论数据内容的急速增长。“我们每天创造2.5万兆字节的数据,90%的现有数据在过去两年内创造。”这种说法的准确出处是IBM公司在其官网上发布的“什么是大数据”,类似的结论常常被一些媒体所转述。

不光是媒体,包括商界、学术期刊都开始热衷于研究大数据的特别之处。2013年,《哥伦比亚新闻评论》(Columbia Journalism Review)上有一篇文章,形容“大数据”是“一个包罗万象的标签”——通过分析大量的数据来重新认识世界。被誉为“信息时代的精神领袖”的克里斯·安德森(Chris Anderson)在《连线》(Wired)杂志上曾预言,数据洪流将导致科学方法不合时宜,他所谓的“理论的终结”正在一步步演变为现实——如此庞大的数据是现成的,没有必要大费周章地提出假设,然后不厌其烦地进行科学验证。如果善于获取和分析数据,它们自身就可以说明很多问题。

何谓大数据?一个数据集合需要满足三个“V”的维度,即大量(huge in volume)、高速(high in velocity)、多变(diverse in variety),有时也会附带第四点,真实或准确(veracity),这可以从不同角度进行解读。一旦掌握了全部人口的数据,就意味着产生新的可能性。在热烈的讨论中,往往被遗忘的,或者暂时被忽视的是这些新鲜出炉的字节有多少是基于个人数据创造。值得一提的是,三个“V”的维度是15年前由美国高德纳公司分析员道格·莱尼(Doug Laney)提出,当时用以描述数据管理的核心问题,后来经过重新演绎,用来定义大数据。

哈佛大学科学史系助理教授丽贝卡·莱莫夫(Rebecca Lemov)在课上讲授大数据主题时,总喜欢提到美国男星查尔顿·赫斯顿(Charlton Heston)主演的反乌托邦科幻电影《超世纪谍杀案》(Soylent Green)。影片在1973年上映,描绘了2022年的未来世界——由于污染、气候变暖和人口过剩导致资源枯竭,蔬菜水果成为稀有的奢侈品,大多数人只能依赖于绿色食品(soylent)维持生命,官方口径是由大豆(soy)和扁豆(lentil)制成。事实并非如此,男主人公经过调查后发现,绿色食品是用人做的——“Soylent green is people”,这一幕出现在影片结尾处。

莱莫夫套用了这句经典台词,称“大数据就是人”。关于大数据的定义,大部分都没有考虑到与生俱来的人性,也没有揪住意味深长的启示,比如技术与不断改变的自我定义的关系。一组不同以往的新数据,源于人类的日常生活——几乎不用深思熟虑,通过一个简单动作就能完成,推特、脸书、谷歌搜索、在线评论、一键下单。这些是“我”的模糊图像,新的虚拟生活被转换为算法处理。

对于上述数据的生产现场,人类地理学者罗伯·基钦(Rob Kitchin)最近做过编目,包括进货量的记录、数字设备对其使用历史的保存和传播(如手机)、事务处理日志和数字网络的交互(如邮件和网上银行)、网站或软件导航所带来的点击流量、嵌入物体或环境的传感器所收集的测量数据、对机读对象进行的扫描(如条形码)、车载资通系统、社交媒体的信息发布,大量的、动态的、细化的、关联的数据流由此形成。

2012年,沃尔玛每小时创造2.5千万亿字节数据,涉及逾100万笔客户交易。同年,脸书宣布每天处理25亿个页面(链接与评论)、27亿个点赞、3亿张上传的图片。与此同时,精细数据的收集场合与方法一直在更新。今年2月,脸书修改了提供给用户的性别设定,除了传统的男/女,还有56种新的非传统性别。

从输入信息中导出的持续不断的数据轨迹很快投入应用。地图上的数据流不但可以告诉你所在的位置,还能预判你的目的地。警方多了一个得力助手,在犯罪结论认定前,先通过数据对嫌疑对象的行为范式进行分析识别。“大数据是人”,这可以从两方面来理解:大数据由我们的点击、导航的偏好和行为所创造,也随之塑成了许多重大的社会政策。

有文化批评人士指出,大数据所带来的新式精神控制能够影响美国大选,也有人称其为贪婪的人类工程。哈佛商学院教授肖莎娜·祖波夫(Shoshana Zuboff)的观点是,行为数据的利用会导致一系列破坏性的后果,尤其是隐私、自治、道德理性等,负面效应可能要持续几十年。在她看来,这不过是一种新的充满恶意的资本主义。

目前针对“大数据”的定义给人的印象是缺乏主体性,没有起码的人的角度。一批从事技术研究的社会科学家发起倡议,要求研究方式从“以数据为主”转向“以人为本”,避免过分倚重数据导向的研究路径,没有给予“人”足够的重视,后者才是社会学研究的核心。这样的学术自觉起到了一定的作用,却也忽视了一个事实:信息追踪的数据本来就是由人构成的。

尽管打着未来主义的旗号,但是大数据以及数据导向的科学与社会科学的方法史产生了强烈的共鸣。20世纪,社会科学门类逐渐发展分化,社会学区别于人类学、社会心理学区别于经济学,各自形成专业、兴趣领域以及特有的工具。主流的、专业的社会科学富于各种技巧,比如数据析取、场景设置等。1924年至1926年,美国社会学伉俪林德夫妇(Robert and Helen Lynd)在印第安纳的曼西开展了“中镇研究”(Middletown study),他们采取了一种结合了人类学与社会学的方法,包括资料收集、访谈、参与观察、问卷调查以及其他形式。正如历史学家莎拉·艾格(Sarah E Igo)在《均标美国人》(The Averaged American)中写道:“任何细枝末节的事实都不会被错过,从七年级课本的内容到时下热门的电影,从在洗衣机上花费的时间到居民的庭院面积。”

1947年,心理学家罗杰·巴克(Roger Barker)在堪萨斯的奥斯卡卢萨创建了一间社会科学实验室,他和同事们定期收集关于“日常生活”的数据,包括一些并不引人注意的小事。其中有这么一条记录:“1949年4月26日,周二,上午7:01,七岁的雷蒙德摇摇晃晃地捡起一只袜子,慢慢吞吞地套进左脚时,妈妈来了句玩笑——你就不能把眼睛睁开吗?”诸如此类的琐碎内容构成了社会学研究的另一种资源,随着城市变迁、光阴流逝,这样的信息可以帮助我们重温当时的日常生活。开拓性的社会学研究除了小的个体,还关注大的群体。二战后,人类学家麦尔福·史拜罗(Melford Spiro)在西太平洋上的一座岛上给当地人提供心理测试,附近的环礁则进行着核试验。为了学术研究,史拜罗的数据挖掘面向全部人口。

到了20世纪后半叶,城市的定居者越来越习惯于在任何场合回答与自己有关的问题,著名的《金赛报告》(Kinsey Report)是在数以千计份的访谈样本基础上完成。哈佛商学院的研究团队曾在伊利诺伊的西塞罗找了一家工厂,发放了20000份调查问卷,试图弄清其他学者所提到的“难以捉摸的现象”。值得一提的是,受访对象已经开始基于自己的目的来参与这项调查,偶尔提出尖锐的问题、煽动不满情绪、调侃来访的社会学家。

距今不远的未来某一天,人们回看今日,会为我们的天真无邪感到不可思议——如此痴迷新技术,却没能发现行为数据资源的价值,轻而易举地将它们泄露出去。这是一种可能性。另一种可能的情形是,目前看来仍是新的数据采集概念遭到解构,也许是规模,也许是粒度,这种趋势其实很早就已经出现了。

白宫政府新近发布的一份关于大数据的报告称:“技术轨道显而易见,今后越来越多的个人数据将会产生,但与此同时,必然处于控制之下。”莱莫夫则重申了她的看法:数据的产生不只是与人有关,它同时也是由人所创造,这就是人的数据。

====================================分割线================================

本文转自d1net(转载)

时间: 2024-09-19 10:34:19

大数据与人的主体性的相关文章

首批大数据“百人计划”

近日,贵阳市首批大数据"百人计划"培养对象遴选工作结束. 为进一步加大大数据人才培养力度,打造层次清晰.结构合理.保障有力的大数据人才队伍,市委组织部.市科技局于去年7月启动贵阳市大数据"百人计划"选拔工作.通过申报.资格审查.专家评审.会议研究.面向社会公示等程序,最终确定了首批27名大数据"百人计划"培养对象,主要来自我市有关大数据重点企业.科研机构的创办(领办)人.核心管理人才和高级技术人才,其中包括2名国家"千人计划"

为何大数据让人开始怀疑人生

< 大数据时代>,维克托·迈尔·舍恩伯格.肯尼思·库克耶著,盛杨燕.周涛译,浙江人民出版社 一年多前听说了"大数据"这个词,以为就是"数据大"的意思,随着媒体不断地曝光,以及今年阿尔法狗升级版横扫当今围棋第一人年轻的柯洁之后,对"大数据"的好奇油然而生. 于是从书橱里翻出来这本由舍恩伯格写的"大数据时代",不指望自己能够读懂读通,但是读总比不读要强,遵循"开卷有益"的传统吧. 今天读的是引言部分

警惕大数据欺负人

近日,美联航超卖客票并暴力拖拽亚裔乘客下飞机的行为引发众怒,连美国白宫都看不下去了. 透过现象看本质,这位被赶下飞机的亚裔乘客,其实是大数据分析的"受害者".这也可以算作是大数据时代的负面产物吧. 美国航空业存在一个"合法"的惯例--超卖,就是说一趟航班如果有150个座位,航空公司一般会多卖出几个位子,比如155个.通常情况下总是会有人误机,座位一般够用,但大家如果都赶过来了,那必然有人没位子坐,这个时候,航空公司就会"选择"一些乘客下机. 问题

大数据让人看到更真实的历史

史料海洋给我们提供的是人类经历的数据资料,这些资料是我们证明.证伪历史结论的基础数据.希望读者能从三位量化历史学者的研究中得到一些启发. 历史只有工业革命前后之分 大数据研究不仅能预测人未来的行为,也能让我们更清晰地看清过往的历史.斯坦福大学Clark教授说,"历史只有工业革命前后之分,其他的历史细节虽然很有意思,但不关键."为什么呢?一方面,世界人均GDP在公元1800年前的两三千年里基本没有变化,工业革命之后才逐渐上升;另一方面,工业革命之后人类生活方式.社会结构.政治形态以及文化

仁人帮探索大数据技术

前两期小帮为大家介绍了仁人帮的大数据定义与大数据在仁人帮后台的应用.今天也不跟大家卖关子了,接下来,小帮为大家奉上的是大数据平台技术的探索. 大数据技术,小帮认为可以分成两个大的层面,大数据平台技术与大数据应用技术.要使用大数据,你先必须有计算能力,大数据平台技术包括了数据的采集,存储,流转,加工所需要的底层技术,如hadoop生态圈,数加生态圈. 数据的应用技术是指对数据进行加工,把数据转化成商业价值的技术,如算法,以及由算法衍生出来的模型,引擎,接口,产品等等.这些数据加工的底层平台,包括平

《驾驭大数据》一8.1 哪些人是分析专家

8.1 哪些人是分析专家 驾驭大数据被冠以分析专家头衔的人会有很多不同的称呼.以往最常见的称呼是分析专家.数据挖掘工程师.预测建模工程师以及统计人员.最近,数据科学家这个称呼比较流行,尤其是指那些使用MapReduce工具并分析大数据的人.本书将上述所有人全都认为是分析专家. 事实上,上述分析专家虽然头衔多种多样,但是他们技能的相似程度会大于差异程度.这些分析人员的日常工作都是利用数据解决业务问题.不同类型的分析专家所使用的工具或算法可能会有所不同,但优秀的分析专家会根据需求在不同领域之间自由徜

为什么选择这样的大数据平台架构?

当前BAT基本公开了其大数据平台架构,从网上也能查询到一些资料,关于大数据平台的各类技术介绍也不少,但在那个机制.那个环境.那个人才.那个薪酬体系下,对于传统企业,可借鉴的东西也是有限的. 技术最终为业务服务,没必要一定要追求先进性,各个企业应根据自己的实际情况去选择自己的技术路径. 与传统的更多从技术的角度来看待大数据平台架构的方式不同,笔者这次,更多的从业务的视角来谈谈关于大数据架构的理解,即更多的会问为什么要采用这个架构,到底能给业务带来多大价值,实践的最终结果是什么. 它不一定具有通用性

中国离大数据时代还有不小距离

摘要: 为了迎接即将到来的大数据时代,各大互联网公司都在争分夺秒.阿里巴巴在公布大数据分享平台之后的半年中,也全面启动了攻势.但即使是这个行业的先行者,离大数据时代也还有 "为了迎接即将到来的大数据时代,各大互联网公司都在争分夺秒.阿里巴巴在公布大数据分享平台之后的半年中,也全面启动了攻势.但即使是这个行业的先行者,离大数据时代也还有不小的距离." 刚刚过去的2012年,秦予有个很大的遗憾,就是没能招聘到自己想要的数据科学家,浪费了公司给的招人名额.他是支付宝用户价值创新中心的负责人.

世界迎来大数据时代 标志人类思考世界方式转变

互联网重塑了人类交流的方式.大数据则不同:它标志着社会处理信息方式的变化.随着时间的推移,大数据可能会改变我们思考世界的方式 [美国<外交>杂志5-6月一期文章] 题:大数据的兴起(作者英国<经济学家>杂志数据编辑肯尼思·内尔·丘基尔牛津大学互联网研究院http://www.aliyun.com/zixun/aggregation/6938.html">互联网管理与法规教授维克托·梅耶-舍恩伯洛) 每个人都知道互联网改变了企业经营.政府运作以及人们生活的方式.但是一