《IP组播(第1卷)》一1.6 组播的历史

1.6 组播的历史

必要性是发明之母。20世纪80年代早期,Steve Deering是斯坦福大学的一名学生,正在研究分布式处理项目。这个项目中使用的其中一个底层通信机制能够让一台设备向多台设备发送消息。随着项目的成长,计算机资源的需求也随之增长。这些资源分布在校园各处,因此需要有一种机制能够让这些设备通过路由器(三层)架构进行通信。这种通信可以使用多个单播消息实现,或者通过在整个网络中发送广播消息实现。在这个环境中,上述方法都不可行,因为它们的效率都太低了。这个解决方案需要一个单独的组地址,需要路由器能够参与发送消息,并且需要主机能够随意加入或离开这个组——从而,组播诞生了。

1.6.1 组播骨干

组播骨干(MBone)项目启动于Deering博士发明组播的10年后。当时构成Internet的那些路由器还无法支持组播;组播骨干由一些UNIX主机构成,它们之间使用DVMRP(距离矢量组播路由协议)通过隧道相连,运行称为mrouted的后台程序。组播骨干当时由高校推动,用来传输的内容包括IETF(Internet工程任务组)会议、音乐会等,观众范围非常有限。

1.6.2 Internet组播

Internet组播允许所有连接到Internet的人都能够观看组播中的内容。你能想象通过组播观看任意电视频道、收听广播电台、参加远程教育课程吗?但很可惜,在20世纪90年代由学术界推动的组播骨干并没有变成ISP(Internet运营商)提供的主流服务,因为很多运营商都不支持在它们的网络中传输组播流量。ISP对于组播的支持由于多种因素被推迟了:安全考量、实施的复杂性,以及轻松共享组播路由信息的能力。

但这并没有消除私有网络中对于组播的需求。就像前文中提到的,很多应用都获益于能够传输组播流量的网络架构。我们仍然可以在Internet上通过隧道传输组播流量,即使Internet本身并不支持组播。

1.6.3 IPv6组播

Internet的快速增长导致了IPv4地址空间的耗竭。因此人们使用IPv6来支持Internet的扩张,并且为地球上的任意设备连接到网络中做好准备。

IPv4地址使用32比特数值来区分每个设备,而IPv6使用128比特数值。这种增长带来了惊人的可扩展性。IPv6的实施中还有另一个有趣的特征,那就是IPv6不再支持网络广播。IPv6中的两种通信方式是单播或组播。

由于在协议创建期间组播就是考量内容之一,因此IPv6的内建功能增强了组播的操作。除了更大的地址空间之外,IPv6中的其他特性也使组播的设计变得简单。第6章将介绍更多有关IPv6功能和组播的内容。

1.6.4 组播的发展与标准化

与很多其他的网络技术一样,人们对于组播发展的推动是不遗余力的。人们已经对组播协议的不足之处进行了很多改善,还增强了很多特性,这些不足和特性都是在创建组播协议之初所没有预见到的。

你能想象如果每个开发者都根据他们自己对于这项协议的理解来编写代码,会发生什么吗?幸运的是,标准化团体协调了解决技术难题的方法,并创建统一文档,让这些解决方案能够实现兼容性和互操作性。有两个主要的标准化组织为推动通用实施方法做出了贡献,它们是IETF(Internet工程任务组)和IEEE(电气和电子工程师协会)。

注释
 

IETF(Internet工程任务组)的宗旨是促进Internet的发展,推出高质量的技术文档,影响人们设计、使用和管理Internet的方式。IETF生成的文档有RFC(Requests for Comment)和BCP(Best Current Practices)。

IEEE(电气和电子工程师协会)是最大的技术专业协会,它的宗旨是促进创新和完善技术,以此造福于人类。除了开发以太网标准外,IEEE还在很多其他领域推出了标准。

时间: 2024-10-28 13:02:22

《IP组播(第1卷)》一1.6 组播的历史的相关文章

《TCP/IP路由技术(第二卷)》一1.4 配置EGP

1.4 配置EGP TCP/IP路由技术(第二卷) 通过以下4个基本步骤即可完成路由器上的EGP配置. 第1步:利用命令autonomous-system指定路由器的AS. 第2步:利用命令router egp启动EGP进程并指定邻居的AS. 第3步:利用命令neighbor指定EGP邻居. 第4步:指定由EGP宣告的网络. 下面的第一个案例研究将详细解释前3个配置步骤,同时也给出了步骤4的多种实现方法. 1.4.1 案例研究:EGP末梢网关 图1-10给出了一台位于AS 65502的EGP末梢

《TCP/IP路由技术(第二卷)》一1.9 配置练习题

1.9 配置练习题 TCP/IP路由技术(第二卷) 本书附录E中提供了以下配置练习题的答案. (1)图1-14中的自治系统65531是一个核心AS,请在RTA和RTB上配置EGP,要求如下: 不要将AS内的数据链路宣告给任何外部邻居. RTA将连接在其S1接口上的网络宣告给RTB:另外,要求RTA和RTB之间不能宣告其他AS间链路. RTA和RTB向其外部邻居(除了从其他自治系统学习到的网络)宣告默认路由,而且这两个网关都不得将默认路由宣告给其内部邻居. (2)例1-26给出了图1-15中RTC

《TCP/IP路由技术(第二卷)》一导读

前 言 TCP/IP路由技术(第二卷)自从出版了<TCP/IP路由技术(第一卷)>之后,虽然Cisco Press"CCIE职业发展系列"中增加了大量新书,而且CCIE计划本身也被扩展到多个专业领域,但IP路由协议仍然是所有准CCIE们的核心基础.因此,必须透彻地对其加以理解和掌握,否则基础不牢,大厦将倾. 我在<TCP/IP路由技术(第一卷)>的前言中曾经说过,"--随着互联网络规模和复杂性的不断增大,路由问题也随即变得庞大且错综复杂".由

《TCP/IP路由技术(第二卷)》一1.1 EGP的起源

1.1 EGP的起源 TCP/IP路由技术(第二卷)在20世纪80年代早期,构成ARPANET(现代互联网的前身)的路由器(网关)设备上都运行了一种距离向量路由协议--GGP(Gateway-to-Gateway Protocol,网关到网关协议).但是随着ARPANET的不断发展,与当今许多负责管理日益增长的互联网络的网管员一样,ARPANET的架构师们也预见到了相同的问题:现在运行的路由协议没有很好的扩展性. Eric Rosen在RFC 827中阐述了以下扩展性问题. 由于所有的网关都要知

《TCP/IP路由技术(第二卷)》一1.6 附 注

1.6 附 注 TCP/IP路由技术(第二卷)1Eric Rosen,"RFC 827:外部网关协议(EGP)". 2Linda J. Seamonson和Eric C. Rosen"RFC 888:'末梢'外部网关协议". 3D.L. Mills,"RFC 904:外部网关协议正式规范". 4J. Rekhter,"RFC 1092:EGP和新NSFNET骨干网的策略路由".

《TCP/IP路由技术(第二卷)》一1.5 检测与排除EGP故障

1.5 检测与排除EGP故障 TCP/IP路由技术(第二卷)在1.3节中已经解释了EGP为何无法应用于复杂的AS间拓扑结构,而强制性的简单拓扑结构带来了一个意外的好处,那就是EGP的故障检测和排除变得非常简单. 与其他路由协议一样,检测与排除EGP故障的第一步工作就是查看路由表.如果所请求的路由缺失或路由表中存在一条非期望路由,通过查看路由表就可以检测到问题的根源.由于EGP的度量值几乎没有任何意义,因而与其他路由协议相比,利用路由表进行EGP故障的检测和排除工作可以得到大大简化. 需要注意的是

《TCP/IP路由技术(第二卷)》一第1章 外部网关协议

第1章 外部网关协议 TCP/IP路由技术(第二卷)本章将主要讨论以下主题. • EGP的起源:本节将讨论在RFC 827(1982)中定义的外部网关协议的发展历史. • EGP的操作:本节将讨论EGP的基本操作机制,重点是EGP拓扑结构.EGP功能及EGP消息格式. • EGP的不足:本节将探讨为什么EGP不再是一种可行的外部网关协议解决方案. • 配置EGP:本节将通过4个独立的案例研究--EGP末梢网关.EGP核心网关.间接邻居和默认路由,来说明不同类型的EGP配置方法. • 检测和排除E

《TCP/IP路由技术(第二卷)》一1.7 展 望

1.7 展 望 TCP/IP路由技术(第二卷)本章不但说明了AS间路由协议的发明驱动力,也解释了EGP难以胜任该角色的原因.第2章将简要描述EGP的替代协议--边界网关协议及其操作.表1-10汇总了本章用到的所有命令.

编程-10个随机数,需要分为两组,每组分别5个数,要求两个组的和值最接近

问题描述 10个随机数,需要分为两组,每组分别5个数,要求两个组的和值最接近 比如一个数组10个随机数,需要分为两个数组,每个数组5个数,要求两个数组的和值最接近,怎么编程? 解决方案 动态规划 http://my.oschina.net/wizardpisces/blog/114538 解决方案二: 先排序,然后最小值与最大值搭配,就像从1到99求和一样 解决方案三: 1.先产生10个随机数.2.5层循环生成第一组组合,剩下的是另一组.3.循环生中,比较二组和之差,记录下来(二组结合和差).每

无缝滚动-JQurey轮播图最后一张图片与第一张图片如何做到无缝轮播?并且轮播顺序能和前几张图片轮播顺序一样?

问题描述 JQurey轮播图最后一张图片与第一张图片如何做到无缝轮播?并且轮播顺序能和前几张图片轮播顺序一样? <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml&q