《Spark与Hadoop大数据分析》——第2章 Apache Hadoop和Apache Spark入门

第2章

Apache Hadoop和Apache Spark入门

在本章,我们将学习 Hadoop 和 Spark 的基本知识,了解 Spark 与 MapReduce 有哪些不同,并开始安装集群和设置分析所需的工具。

本章分为以下几个子主题:

时间: 2024-09-30 05:57:10

《Spark与Hadoop大数据分析》——第2章 Apache Hadoop和Apache Spark入门的相关文章

《Spark与Hadoop大数据分析》——1.3 工具和技术

1.3 工具和技术 让我们来看看在 Hadoop 和 Spark 中用于大数据分析的不同工具和技术. 虽然 Hadoop 平台可以用于存储和处理数据,但 Spark 只能通过将数据读入内存来进行处理. 下表展示了典型大数据分析项目中所使用的工具和技术.

颠覆大数据分析之第二章结束语

颠覆大数据分析之第二章结束语 译者:黄经业    购书 本章讨论了一些业务场景,以及它们在BDAS框架中的实现.同时还介绍了什么是BDAS框架,并重点介绍了Spark, Shark,以及Mesos.Spark在那些涉及到优化的场景中非常有用--比如说Ooyala希望基于约束条件来动态地选择最优的CDN,以便提升视频的用户体验.必须注意的是,正如第一章所说的,众所周知,约束及变量过多的优化问题是很难在Hadoop MR中解决的.随机法要更适合Hadoop.不过你应当时刻牢记一点,Hadoop很难解

《Spark大数据分析实战》——3.1节SQL on Spark

3.1 SQL on Spark AMPLab将大数据分析负载分为三大类型:批量数据处理.交互式查询.实时流处理.而其中很重要的一环便是交互式查询.大数据分析栈中需要满足用户ad-hoc.reporting.iterative等类型的查询需求,也需要提供SQL接口来兼容原有数据库用户的使用习惯,同时也需要SQL能够进行关系模式的重组.完成这些重要的SQL任务的便是Spark SQL和Shark这两个开源分布式大数据查询引擎,它们可以理解为轻量级Hive SQL在Spark上的实现,业界将该类技术

《Spark与Hadoop大数据分析》一一第1章 从宏观视角看大数据分析

第1章 从宏观视角看大数据分析 本书的目标是让你熟悉 Apache Spark用到的工具和技术,重点介绍Hadoop平台上使用的Hadoop部署和工具.大多数Spark的生产环境会采用Hadoop集群,用户在集成 Spark和Hadoop配套的各种工具时会遇到很多挑战.本书将讲解Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)和另一种资源协商器(Yet Another Resource Negotiator,YARN)面临的集成挑战,以及Spa

《Spark与Hadoop大数据分析》——第1章 从宏观视角看大数据分析

第1章 从宏观视角看大数据分析 本书的目标是让你熟悉 Apache Spark用到的工具和技术,重点介绍Hadoop平台上使用的Hadoop部署和工具.大多数Spark的生产环境会采用Hadoop集群,用户在集成 Spark和Hadoop配套的各种工具时会遇到很多挑战.本书将讲解Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)和另一种资源协商器(Yet Another Resource Negotiator,YARN)面临的集成挑战,以及Spa

《Spark与Hadoop大数据分析》一一第2章 Apache Hadoop和Apache Spark入门

第2章 Apache Hadoop和Apache Spark入门 在本章,我们将学习 Hadoop 和 Spark 的基本知识,了解 Spark 与 MapReduce 有哪些不同,并开始安装集群和设置分析所需的工具.本章分为以下几个子主题:介绍 Apache Hadoop介绍 Apache Spark讨论为什么要配套使用 Hadoop 和 Spark安装 Hadoop 和 Spark 集群

《Spark与Hadoop大数据分析》一一

3.1 启动 Spark 守护进程 如果你计划使用 Standalone 的集群管理器,则需要启动 Spark 的主机(master)和工作机(worker)的守护进程(daemon),它们是 Spark 架构的核心组件.守护进程的启动/停止在不同的发行版里略有差异.Hadoop 发行版(如 Cloudera.Hortonworks 和 MapR)会把 Spark 作为服务,并把 YARN 作为默认的资源管理器.这意味着在默认情况下所有 Spark 应用程序都会在 YARN 框架上运行.但是,要

《Spark与Hadoop大数据分析》一一导读

Preface 前 言 本书讲解了Apache Spark和Hadoop的基础知识,以及如何通过简单的方式将它们与最常用的工具和技术集成在一起.所有Spark组件(Spark Core.Spark SQL.DataFrame.Dataset.Conventional Streaming.Structured Streaming.MLlib.GraphX和Hadoop核心组件).HDFS.MapReduce和Yarn 都在 Spark + Hadoop 集群的实现示例中进行了深入的探讨. 大数据分

《Spark与Hadoop大数据分析》——3.1 启动 Spark 守护进程

3.1 启动 Spark 守护进程 如果你计划使用 Standalone 的集群管理器,则需要启动 Spark 的主机(master)和工作机(worker)的守护进程(daemon),它们是 Spark 架构的核心组件.守护进程的启动/停止在不同的发行版里略有差异.Hadoop 发行版(如 Cloudera.Hortonworks 和 MapR)会把 Spark 作为服务,并把 YARN 作为默认的资源管理器.这意味着在默认情况下所有 Spark 应用程序都会在 YARN 框架上运行.但是,要