问题描述 参照org.apache.spark.examples包中的HBaseTest编写一个读取HBase表中数据转换为RDD的程序.目标表中数据量为2494068条,但是使用newAPIHadoopRDD读进来的RDD.count后的结果为1440966.是何原因,为什么读入的数据集不完整?代码如下:importorg.apache.hadoop.hbase.client.HBaseAdminimportorg.apache.hadoop.hbase.{HBaseConfiguration
一.前置知识详解 Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作, Load:可以创建DataFrame, Save:把DataFrame中的数据保存到文件或者说与具体的格式来指明我们要读取的文件的类型以及与具体的格式来指出我们要输出的文件是什么类型. 二.Spark SQL读写数据代码实战 import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD;
问题描述 Configurationconf=HBaseConfiguration.create();StringtableName="testTable";Scanscan=newScan();scan.setCaching(10000);scan.setCacheBlocks(false);conf.set(TableInputFormat.INPUT_TABLE,tableName);ClientProtos.Scanproto=ProtobufUtil.toScan(scan)
问题描述 spark版本:1.2.1hbase版本:0.98importorg.apache.hadoop.hbase.HBaseConfigurationimportorg.apache.hadoop.hbase.mapreduce.TableInputFormatimportorg.apache.spark.SparkConfimportorg.apache.spark.SparkContextobjectHBaseTest{defmain(args:Array[String]){valsp
Astro 详细介绍 华为2015年7月20日在O'Reilly Open Source Convention (OSCON) 上宣布Spark SQL on HBase package正式开源.Spark SQL on HBase package 项目又名 Astro,端到端整合了 Spark,Spark SQL和HBase的能力,有助于推动帮助Spark进入NoSQL的广泛客户群,并提供强大的在线查询和分析以及在垂直企业大规模数据处理能力. Apache HBase 是数据在 HDFS 上的
大数据时代,中大型企业数据的爆发式增长,几乎每天都能产生约 100GB 到 10TB 的数据.而企业数据分系统构建与扩张,导致不同应用场景下大数据冗余严重.行业亟需一个高效.统一的融合数仓,从海量数据中快速获取有效信息,从而洞察机遇.规避风险. 在这样的现状下,CarbonData 诞生了,作为首个由中国贡献给Apache社区的顶级开源项目,CarbonData 提供了一种新的融合数据存储方案,以一份数据同时支持多种大数据应用场景,并通过丰富的索引技术.字典编码.列存等特性提升了 IO 扫描和计
功能 Spark新发布的Spark SQL组件让Spark对SQL有了别样于Shark基于Hive的支持.参考官方手册,具体分三部分: 其一,能在Scala代码里写SQL,支持简单的SQL语法检查,能把RDD指定为Table存储起来.此外支持部分SQL语法的DSL. 其二,支持Parquet文件的读写,且保留Schema. 其三,能在Scala代码里访问Hive元数据,能执行Hive语句,并且把结果取回作为RDD使用. 第一点对SQL的支持主要依赖了Catalyst这个新的查询优化框架(下面会给
Catalyst Catalyst是与Spark解耦的一个独立库,是一个impl-free的执行计划的生成和优化框架. 目前与Spark Core还是耦合的,对此user邮件组里有人对此提出疑问,见mail. 以下是Catalyst较早时候的架构图,展示的是代码结构和处理流程. Catalyst定位 其他系统如果想基于Spark做一些类sql.标准sql甚至其他查询语言的查询,需要基于Catalyst提供的解析器.执行计划树结构.逻辑执行计划的处理规则体系等类体系来实现执行计划的解析.生成.
SparkStrategy: logical to physical Catalyst作为一个实现无关的查询优化框架,在优化后的逻辑执行计划到真正的物理执行计划这部分只提供了接口,没有提供像Analyzer和Optimizer那样的实现. 本文介绍的是Spark SQL组件各个物理执行计划的操作实现.把优化后的逻辑执行计划映射到物理执行操作类这部分由SparkStrategies类实现,内部基于Catalyst提供的Strategy接口,实现了一些策略,用于分辨logicalPlan子类并替换为