一名工程师对于深度学习的理解-神经网络基础ANN

读书期间对于深度学习也有涉及,不过只是皮毛,在这个数据和算法的时代,也需要更加贴近算法。于是从一名工程师角度出发,希望通过几篇文章,将深度学习基础记录下来,同时也是对于自己学习的总结和积累。总体思路是ANN-CNN-DNN,中间想起来有什么忘记的,也会加番。

神经网络概述


这是一张典型的人工神经网络的图,图中的节点称为神经元,图共分为三层,第一层为输入层,第二层为隐藏层,第三层为输出层。输入层接受外部世界的输入,具像化为图像的像素值,实体的特征值等,输出层概率预测结果,具像化为该图像是人像,该实体为潜在商家。

神经元


一个神经元将多个输入及其权值统一为下层节点的一个输入。例如:

而神经元一般都使用sigmoid函数,至于为什么使用sigmoid函数,也是个很有探讨意义的问题,具体可以看这篇文章了解sigmoid的特性,http://www.tuicool.com/articles/uMraAb。


其中,w表示权重向量,x表示输入向量,b为该节点的阈值。
那么下面问题就是如何选择合适的权重和阈值,构建出来合适的网络。

构建合适的网络

网络结构往往决定了算法复杂度和模型可调度,输出层主要由向量决定,输出层主要由预测类型决定,主要问题就在中间层数和节点数的选择上,节点数和层数越多意味着模型可调节性越强,预测结果的粒度越细,但同时也意味着计算复杂度越高。经验中间层一般选1-2层,节点数作为可调参数。

选择合适权重和阈值

首先,定义损失函数,损失函数的意义在于对于训练集评价预测结果和真实结果之间的差异

该损失函数其实是预测结果与真实结果之间的方差
我们希望通过调整权重w和阈值b的值来使预测结果和真实结果之间的差更小。相当于在一个解空间中寻找最优解。解法有很多,如梯度下降法,拟牛顿法等。

梯度下降法


通过上述公式可以看出,对于损失函数的变化可以描述为损失在每个维度v上的变化值之和,用向量表示为

为了是损失更小而不是更大,损失的变化应该小于0,于是取

则,损失的下降可以表示为

反向传播

反向传播其实是对于当一次预测结束后,评估每个参数对于预测结果误差的贡献,并对其进行调整,调整方法可以通过损失函数对于权值的求导得到:

通过多次迭代,获得损失函数的极小值。步长决定了函数的收敛速度。
小结下:
人工神经网络就好像一个在陌生的城市迷路的孩子,每走一步都对该步进行评估,计算其到达目的地的可能性,并逐渐走到目的地。人工神经网络比较重要的有三部分:
-1. 结构:层级网络
-2. 求解方法:梯度下降
-3. 求解思想:反向传播

下集:一名工程师对于深度学习的理解-卷积神经网络CNN

时间: 2024-09-20 16:54:28

一名工程师对于深度学习的理解-神经网络基础ANN的相关文章

零基础入门深度学习(5) - 循环神经网络

  在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用.他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的.但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的.   比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列:当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列.这时,就需要用到深度学习领域中另一类非常重要神经网络:循

零基础入门深度学习(4) - 卷积神经网络

在前面的文章中,我们介绍了全连接神经网络,以及它的训练和使用.我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适.本文将要介绍一种更适合图像.语音识别任务的神经网络结构--卷积神经网络(Convolutional Neural Network, CNN).说卷积神经网络是最重要的一种神经网络也不为过,它在最近几年大放异彩,几乎所有图像.语音识别领域的重要突破都是卷积神经网络取得的,比如谷歌的GoogleNet.微软的ResNet等,打败李世石的AlphaGo也用到了这

BAT资深算法工程师《深度学习》读书分享:概率和信息论

<深度学习>这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人.GAN的提出者.谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师).同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville.只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理一直讲到最新的方法,而且在技术的应用方面也有许多具体介绍.这本书面向的对象也不仅是学习相关专业的高校学生

深度学习真的可以零基础入门吗?

我们先来谈谈自学深度学习最大的问题. 现在搞深度学习的,十之八九并不是"科班出身". 这就导致:如果你想要跨行成为一名深度学习工程师,从头到尾的一切,都基本靠自学.但是,开发者很快就会发现自己遇到了第一个障碍: 绝大多数的学习资源以理论研究为导向,轻工程实践. 其实这也难怪.这几年,深度学习是火了,但大牛们都来自学界,例子不胜枚举:比如谷歌云首席科学家李飞飞.主管 FAIR 的 Yann LeCun.在谷歌大脑的 Ian Goodfellow,以及在过去三年里任百度首席科学家的吴恩达.

【深度学习框架大PK】褚晓文教授:五大深度学习框架三类神经网络全面测评(23PPT)

香港浸会大学褚晓文教授团队在2016年推出深度学习工具评测的研究报告,并在2017年年初发布更新,引起广泛关注.见新智元报道< 基准评测 TensorFlow.Caffe.CNTK.MXNet.Torch 在三类流行深度神经网络上的表现(论文)>,2017年初版本的评测的主要发现可概括如下: 总体上,多核CPU的性能并无很好的可扩展性.在很多实验结果中,使用16核CPU的性能仅比使用4核或8核稍好.TensorFlow在CPU环境有相对较好的可扩展性. 仅用一块GPU卡的话,FCN上Caffe

独家 | 一文读懂深度学习

Figure1. Deep learning导图   前言 深度学习(deep learning)的概念最早可以追溯到1940-1960年间的控制论(cybernetics),之后在1980-1990年间发展为连接主义(connectionism),第三次发展浪潮便是2006年由人工神经网络(Artificial neural network)扩展开来并发展成为今天十分火热的深度学习(Figure 2).实际上,深度学习的兴起和发展是非常自然的,人们在应用经典的机器学习方法时,需要对具体的问题或

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

雷锋网按:为了方便读者学习和收藏,雷锋网(公众号:雷锋网)特地把吴恩达教授在NIPS 2016大会中的PPT做为中文版,由三川和亚峰联合编译并制作. 今日,在第 30 届神经信息处理系统大会(NIPS 2016)中,百度首席科学家吴恩达教授发表演讲:<利用深度学习开发人工智能应用的基本要点(Nuts and Bolts of Building Applications using Deep Learning)>. 此外,吴恩达教授曾在今年 9 月 24/25 日也发表过同为<Nuts a

2015年科技预测:深度学习和机器智能将席卷世界

尽管斯蒂芬·霍金(Stephen Hawking)和埃伦·穆斯克(Elon Musk)都曾经发出警告,但是与人类为敌的人工智能并不会很快出现并毁灭世界.不过,有一点是可以肯定的,那就是人工智能,即深度学习和机器智能的实际应用将继续取得进展.科技行业的每个角落都在流传,大数据的最大组成部分(也是非结构化的那部分)拥有可学习模式,而我们现在拥有计算能力和算法可对其进行识别--并且是在很短的时间内完成. 这项技术带来的影响将会改变每个行业的经济状况.此外,虽然机器学习和数据科学相关人才的市场价值迅速攀

2016这一年,深度学习开始主宰互联网

雷锋网按:2016 即将画上句号,当我们回顾这一年的科技进展时,雷锋网很难不联想到一个词--深度学习.当它从研究室中脱胎而出,并成为今年的当红热词,实际上我们已经意识到深度学习的来临.从 AlphaGo 到 Google Translate,雷锋网也做过不少覆盖和解析.Cade Metz 为 Wired 撰文回顾了与深度学习同行的这一年,雷锋网(公众号:雷锋网)编译,未经许可不得转载. 在澳大利亚西海岸,Amanda Hodgson 正在操控无人机飞跃海面,无人机可以帮助他们在水面上拍摄照片,利