A*算法中最缓慢的部分就是在开启列表中寻找F值最低的节点或者方格。取决于地图的大小,你可能有十几,成百甚至上千的节点需要在某个时候使用A*搜索。无需多讲,反复搜索这么大的列表会严重拖慢整个过程。然而,这些时间在极大程度上受你存储列表的方式影响。
有序和无序的开启列表:简单的方法
最简单的方法就是顺序存储每个节点,然后每次需要提取最低耗费元素的时候都遍历整个列表。这提供可快速的插入速度,但是移除速度可能是最慢的,因为你需要检查每个元素才能够确定哪个才是F值最低的。
通常你可以保持你列表处于有序状态来提升效率。这花费了稍微多一点的预处理时间,因为你每次插入新元素都必须把他们放在恰当的位置。不过移除元素倒是很快。你只要移除第一个元素就可以了,它一定是F值最低的。
有很多方法可以保持你的数据有序(选择排序,冒泡排序,快速排序,等等)并且你可以用你最熟悉的搜索引擎找到这方面的文章。不过我们至少可以先提几种想法。最简单的方法可能是,当你需要添加新元素的时候,从列表开始的地方,依次比较每个元素的F值和要插入的F值的大小。一旦找到一个相等或者更高的F值,你就可以把新元素插入到列表中那个元素的前面。取决于你使用的计算机于亚,使用class或者struct实现的链表可能是不错的方法。
这种方法可以通过保持列表中所有元素的平均值来得到改进,使用这个平均值来决定是从头(如上所说)还是从尾开始处理。总的说来,比平均F值低的新元素将被从头开始处理,而比平均F值高的则从末尾开始。这种方法可以节省一半的时间。
复杂一些,但是更快的方法是把这一想法提高到新的层次使用快速排序,它基本上是从比较新元素和列表中间元素的F值开始。如果新元素的F值低,你接着把它和1/4处元素进行比较,如果还是更低你就比较它和1/8处的元素,如此这般,不断的折半你的列表并且比较,直到找到合适的位置。这个描述很简单,你可能会想到网上寻找快速排序的更多资料。这比至此描述的任何方法都快。
二叉堆
二叉堆和刚才说的快速排序很像,经常被那些苛求A*速度的人使用。根据我的经验,二叉堆平均提高寻路速度2-3倍,对于包含大量节点的地图(也就是说100×100节点或者更多)效果更明显。友情提醒,然而二叉堆很难处理,除非你使用含有大量节点的地图,速度至关重要,否则不值得为它头痛。
文章其他的部分深入说明了二叉堆和它在A*算法中的用途。如果你对我的文章存有疑惑,在文章末尾进一步阅读的小节中提供了更多的观点。
仍然有兴趣?好,我们继续。。。
在有序列表中,每个元素都按照由低到高或由高到低的顺序保存在恰当的位置。这很有用,但是还不够。事实上,我们并不关心数字127是否比128在更低的位置上。我们只是想让F值最低的元素能放在列表顶端以便容易访问。列表的其他部分即使是混乱的也不必在意。列表的其他部分只有在我们需要另一个F值最低的元素的时候,才有必要保持有序。
基本上,我们真正需要的是一个“堆”,确切的说,是个二叉堆。二叉堆是一组元素,其中最大或者最小(取决于需要)的元素在堆顶端。既然我们要寻找F值最小的元素,我们就把它放在堆顶端。这个元素有两个子节点,每个的F值等于,或者略高于这个元素。每个子节点又有两个子节点,他们又有和他们相等或略高的子节点。。。依次类推。这里是一个堆可能的样子:
注意,F值最低的元素(10)在最顶端,第二低的元素(20)是它的一个子节点。可是,其后就没有任何疑问了。在这个特定的二叉堆里,第三低的元素是24,它离堆顶有两步的距离,它比30小,但是30却在左侧离堆顶一步之遥的地方。简单的堆放,其他的元素在堆的哪个位置并不重要,每个单独的元素只需要和它的父节点相等或者更高,而和它的两个子节点相比,更低或者相等,这就可以了。这些条件在这里都完全符合,所以这是个有效的二叉堆。
很好,你可能会想,这的确有趣,但是如何把它付诸实施呢?嗯,关于二叉堆的一个有趣的事实是,你可以简单的把它存储在一个一维数组中。
在这个数组中,堆顶端的元素应该是数组的第一个元素(是下标1而不是0)。两个子节点会在2和3的位置。这两个节点的4个子节点应该在4-7的位置。
总的来说,任何元素的两个子节点可以通过把当前元素的位置乘以2(得到第一个子节点)和乘2加1(得到第二个子节点)来得到。就这样,例如堆中第三个元素(数值是20)的两个子节点,可以在位置2*3 = 6和2*3 +1 = 7这两个位置找到。那两个位置上的数字非别是30和24,当你查看堆的时候就能理解。
你其实不必要知道这些,除了表明堆中没有断层之外知道这些没有任何价值。7个元素,就完整的填满了一个三层堆的每一层。然而这并不是必要的。为了让我们的堆有效,我们只需要填充最底层之上的每一行。最底层自身可以是任意数值的元素,同时,新的元素按照从左到右的顺序添加。这篇文章描述的方法就是这样做的,所以你不必多虑。