10519 - !! Really Strange !!
Time limit: 3.000 seconds
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=115&page=show_problem&problem=1460
思路:注意到题目所说“Every two area have exactly two points to intersect and no three circles intersect in a common point”,所以第n个圆与其它n-1个圆共有2*(n-1)个交点,新生成2*(n-1)个区域,所以f(n)=f(n-1)+2*(n-1),进而可得f(n)=n^2-n+2,边界f(0)=1。
完整代码:
/*0.012s*/ #include<bits/stdc++.h> using namespace std; const int maxn = 210; char numstr[maxn]; struct bign { int len, s[maxn]; bign() { memset(s, 0, sizeof(s)); len = 1; } bign(int num) { *this = num; } bign(const char* num) { *this = num; } bign operator = (const int num) { char s[maxn]; sprintf(s, "%d", num); *this = s; return *this; } bign operator = (const char* num) { len = strlen(num); for (int i = 0; i < len; i++) s[i] = num[len - i - 1] & 15; return *this; } ///输出 const char* str() const { if (len) { for (int i = 0; i < len; i++) numstr[i] = '0' + s[len - i - 1]; numstr[len] = '\0'; } else strcpy(numstr, "0"); return numstr; } ///去前导零 void clean() { while (len > 1 && !s[len - 1]) len--; } ///加 bign operator + (const bign& b) const { bign c; c.len = 0; for (int i = 0, g = 0; g || i < max(len, b.len); i++) { int x = g; if (i < len) x += s[i]; if (i < b.len) x += b.s[i]; c.s[c.len++] = x % 10; g = x / 10; } return c; } ///减 bign operator - (const bign& b) const { bign c; c.len = 0; for (int i = 0, g = 0; i < len; i++) { int x = s[i] - g; if (i < b.len) x -= b.s[i]; if (x >= 0) g = 0; else { g = 1; x += 10; } c.s[c.len++] = x; } c.clean(); return c; } ///乘 bign operator * (const bign& b) const { bign c; c.len = len + b.len; for (int i = 0; i < len; i++) for (int j = 0; j < b.len; j++) c.s[i + j] += s[i] * b.s[j]; for (int i = 0; i < c.len - 1; i++) { c.s[i + 1] += c.s[i] / 10; c.s[i] %= 10; } c.clean(); return c; } ///除 bign operator / (const bign &b) const { bign ret, cur = 0; ret.len = len; for (int i = len - 1; i >= 0; i--) { cur = cur * 10; cur.s[0] = s[i]; while (cur >= b) { cur -= b; ret.s[i]++; } } ret.clean(); return ret; } ///模、余 bign operator % (const bign &b) const { bign c = *this / b; return *this - c * b; } bool operator < (const bign& b) const { if (len != b.len) return len < b.len; for (int i = len - 1; i >= 0; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) const { return !(b < *this); } bool operator >= (const bign &b) const { return !(*this < b); } bool operator == (const bign& b) const { return !(b < *this) && !(*this < b); } bool operator != (const bign &a) const { return *this > a || *this < a; } bign operator += (const bign &a) { *this = *this + a; return *this; } bign operator -= (const bign &a) { *this = *this - a; return *this; } bign operator *= (const bign &a) { *this = *this * a; return *this; } bign operator /= (const bign &a) { *this = *this / a; return *this; } bign operator %= (const bign &a) { *this = *this % a; return *this; } }; int main() { bign n; while (gets(numstr)) { n = numstr; puts(n == 0 ? "1" : (n * n - n + 2).str()); } return 0; }
作者:csdn博客 synapse7
查看本栏目更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索int
, return
, this
, const
, operator
len
win10 10519、递推公式、递推宝、递推公式求通项公式、递推数列,以便于您获取更多的相关知识。