第1章 引论
实用机器学习
随着计算机和互联网越来越深入到生活中的方方面面,人们搜集到的数据也呈指数级的增长。在这种情况下,大数据(big data)应运而生。大数据通常体量特别大,而且数据比较复杂,使得无法直接使用传统的数据库工具对其进行存储和管理。大数据带来了很多挑战,如数据的搜集、整理、存储、共享、分析和可视化等。广义的大数据处理涵盖了上述所有领域;狭义的大数据更多是指如何使用机器学习来分析大数据,从海量的数据中分析出有用的信息。
大数据分析的核心是机器学习算法。很多时候,我们有足够的数据,但是对如何利用这些数据缺乏理解。同时,实际问题往往比较复杂,并不能直接套用机器学习算法,我们需要对实际问题进行一些转化,使得机器学习算法可以应用。虽然实际问题表现形式各异,但是在将它们转化为机器学习能够处理的问题时,一般转化为如下4类问题:(1)回归问题;(2)分类问题;(3)推荐问题;(4)排序问题。这4类问题是实际应用中最主要的类型,覆盖了大部分实际问题。在1.3节,我们将详细介绍每类问题的具体例子。
时间: 2024-10-18 06:59:31