小白学数据分析----->回归分析在游戏人气分析的应用探索

昨天简单说了一下相关分析在充值购买失衡方面的应用,今天就接着昨天的话题,说一下回归分析(Regression  Analysis),回归分析是研究一个变量(因变量)和另一个变量(自变量)关系的统计方法,用最小二乘方法拟合因变量和自变量的回归模型,把一种不确定的关系的若干变量转化为有确定关系的方程模型近似分析,并且通过自变量的变化来预测因变来预测因变量的变化趋势,在回归分析中两个变量的地位是不平等的,考察某一个变量的变化是依存于其他变量的变化程度,就是存在因果关系。

今天将利用回归分析对游戏数据分析的某些指标进行分析探讨,有关于回归分析的一些理论这里不再讲解,百度即可。今天针对DAU、PCU、ACU、新登等指标进行回归分析。一般而言我们可以使用Excel就能做一元回归分析,Excel做回归分析有两种方式:散点图和回归分析工具。散点图通过添加趋势线可以直观的显示自变量和因变量的关系,如果不存在明显的线性或者曲线关系,就放弃建立回归模型,趋势线能够输出方程和拟合有度(R-square,该值越接近1,方程拟合越好)。第二种方法采用回归分析工具,能够更加详细的输出回归分析指标相关信息,便于更加仔细的进行分析和预测。

回归分析分为线性回归分析和非线性回归分析,首先来看一下线性回归分析。

如果我们使用线性回归分析其实有些前提要考虑:

1)  自变量与因变量的关系,是否是呈直线,是否是一个变量依存于另个变量的变化程度,如刚才所言,变量之间的地位是不平等的。

2)  因变量是否符合正态分布。

3)  因变量数值之间是否独立。

4)  方差是否齐性。

一般来说,按照回归分析工具得出的结果来看,应着重看看残差(residual)是否是正态、独立以及方差齐性,残差就是因变量的实际值与估计值的差值。其实实际应用中,这些理论的条框我们有时候搞不懂,那么我们可以通过其他办法来看,这就是通过散点图就能把以上条框搞定。

是否呈现直线关系,通过散点图就能看出来,如下图所示,大致呈现直线关系。

对于正态分布可以考察残差的正态概率图,如果正态概率图呈现一条直线表示符合正态分布,当然了也可以通过正态性检验方法来检验一下是否符合正态分布。

是否方差齐,可以用残差的分布来看,即以因变量的预测值为x轴,以残差为y轴作图,如果残差无明显的分布,表明方差齐性。如果有一定的趋势,可能存在方差不齐的情况,如下图随着x轴的增加残差的范围逐渐增大,明显的方差不齐的情形。

对于是否独立,也可以通过图形来看, 随着时间的变化,因变量应该没有任何趋势,否则可能表明因变量之间有一定的相关性。还可通过Durbin-Watson法检验是否独立。

今天我们将探讨DAU与PCU、PCU与ACU、DAU与首登三组的回归分析。

首先来看DAU与PCU的回归分析。我们选取一个月的数据,作为分析数据,首先我们来绘制散点图(这里不具体讲解散点图绘制方法)

DAU与PCU

我们绘制散点图,并选择线性趋势线,得到如下的散点图:

之后我们通过回归分析工具进行回归分析结果的汇总来具体解析一下,操作如下:

点击数据|数据分析,如下所示:

找到回归分析

之后确定,并要把进行分析的数据引用单元格选好,残差和正态分布相关选项全部勾选,如下所示。

最后会在新的工作表组生成结果,形式如下所示:

表格术语解释一下:

df=degree of freedom 自由度

SS    Stdev square 方差

MS   Mean square  均方差

F联合检验F值

coefficient回归系数

standard error标准差

T-stat T检验值=回归系数/标准差

P-value P值,T检验值查表对应的P概率值

Lower 95%和upper 95%置信度为95%的下限和上限区间

其实对于建立的回归模型,我们还要进行方程的统计检验,检验的原假设回归系数=0,如果拒绝原假设(p小于置信系数),则回归系数不为0,回归系数或者回归方程显著。

回归工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。

如下图为通过回归分析工具得出的回归分析汇总结果:

可以看到R-square为0.68,也就说68%的数据符合这个方程,拟合方程的观测量为31个,计算下来就是有21个数据项是符合该方程的,F统计量在原假设成立前提下概率为2.55944e-06远远小于显著水平0.05,所以方程显著。但是除了做回归方程和回归系数的显著性检验以外,还需要对回归残差做检验,因为回归方程必须满足均值为0,独立,正态分布,否则最小二乘估计对参数做估计就失效。如下为残差图,基本上是零散的分布。基本上可以说残差独立分布,方程参数估计有效。

此外关于正态分布,可以参考以下的正态概率图来分析:

通过以上的回归分析,我们看到每日的DAU确实对于PCU的拉动起到显著作用和影响,但由于拟合方程系数仅为0.68,说明在DAU这个显著影响因素之外还有其他的影响因素,刚才我们计算了31个观测值,有21个符合该方程,10个观测值不符合该方程,其实这个观测值可能周末效应作用,影响了系数的高低。

剩下的PCU与ACU、DAU与新登的回归分析大家自己参照这个过程可以进行,分析需要警惕一点的是不同的游戏,反映出的结论不一样,就如同有的游戏有周末化学反应,而有的游戏就没有,鄙人接触过这种游戏,因此在做回归分析时,要注意这些理论之外的事项,对于分析会有很大的帮助。

p.s.其实SPSS也可以做回归分析,效果比Excel还好一些,不过还是建议大家先把简单的搞好,搞明白,对于DAU、PCU、ACU、新登的回归分析,也可以帮助预测未来数据,回归分析是很复杂的一类分析,虽然在使用操作很简单,不过在其背后有很多值得学习的地方值得思考的地方,还需要多多练习和思考,做数据分析在某个角度和搞科研是一样的,要有严谨的态度和研究分析要求,比如线性回归的使用必须要遵循几个条件,这是非常重要的,也是必须的,如果不确立好这些,做出来的东西也是错误的,就像本来数据是三角形的,你非要用一个圆形的理论和模型来作为分析方法,根本就是错误的。

参考

http://hi.baidu.com/healthstat/blog/item/8f215df1ad7464a8a40f52d4.html

Excel统计分析与应用 梁烨 柏芳 编著

时间: 2024-10-23 05:53:41

小白学数据分析----->回归分析在游戏人气分析的应用探索的相关文章

小白学数据分析-----> 你的游戏数据分析做好了吗?

"策划和数据的关系和SM一样,你穿皮衣,握着鞭子的时候,才会体验到驾驭数据的刺激,前提是你很坚定你必须站着,一次都不要跪.如果你是跪在地上的那个,那永远永远只能被牵着走." 我们作为游戏运营一直在说数据重要,数据化运营,然而,往往给出来的就是留存率.流失率.活跃.付费渗透率,这些是目前大家都在做的,而且做了很久很久,可惜的是目前还没有形成一些统一的规范,因此我们有了ARPU的质疑,有了一次又一次的质疑,虽然再各自为战,但是没有战出一个所以然. 其实我觉得太多的时候我们只是注意了怎么炫,

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析----->SPSS探索分析实践操作[不同生命周期玩家的充值探索分析]

SPSS为我们提供了探索分析,所谓探索分析之所以是探索,是因为有时候我们对于变量的分布特点不是很清楚,探索的目的在于帮助我们完成以下的工作: 识别数据:例如数据的分布形式.异常值.缺失值: 正态性检验:服从正态分布的检验: 方差齐性检验:不同数据组的方差是否相等. 有关于方差齐性检验原理.正态分布这里不累述,这里主要介绍SPSS的探索分析使用. 数据文件 这里使用的文件是不同周期的充值用户的充值数据,这里主要是针对流失用户和活跃用户的充值数据. 具体操作 首先将源文件加载到SPSS中,选择菜单分

小白学数据分析-----> 新登付费玩家研究模型

一款游戏产品进入成熟期后,重点基本都在拉动收入,原因在于用户量和游戏社会已经形成,老用户不会轻易流失,新用户不断涌入游戏,形成一个相对稳定的游戏社会,这个阶段的收入拉动也是比较显著,但是这样的稳定时期可能随着产品二度.三度开发,不断出现. 要想拉动收入就存在一个问题,就是对于付费用户的关注和分析,这点上我想方法很多了,比如RMF模型,二次消费等付费研究,今天将从另一个角度借助留存.渗透率.漏斗模型等思想重新进行付费的研究. 前段时间看到一个游戏万人商业价值的模型,从宏观上,这个模型能够避开ARP

小白学数据分析----->Excel复合图之复合雷达图

最近和同行交流时看到一个复合图,该图是雷达图和饼图的组合图,看过觉得很有新意,自己经过尝试发现制作不是很复杂,实用性也比较好,今天就简单说说这个图的做法.关于雷达图的信息参考(http://wiki.mbalib.com/wiki/%E9%9B%B7%E8%BE%BE%E5%9B%BE%E5%88%86%E6%9E%90%E6%B3%95),今天就要简单的说说怎么做一个这种复合图. 首先我们来看两个图: 这种复合图在某些情况下能够展示出更多的信息,而同时阅读者不会感觉到很混乱.对于我们平时要完成

小白学数据分析----->移动游戏的使用时长分析

写下该文章,是因为之前看到了几款游戏一个典型的玩家刺激活动,在<多塔联盟>,<萌江湖>等多款游戏的设计中都有体现,如下图所示: 这个功能点的设计,今天在这里讲的更多的还是跟数据有关系,跟用户的行为有关系,大家可能发现了,英雄招募首日共计5次,每次10分钟,如果你感兴趣,一定有一个疑问,为什么是5次,且每次是10分钟? 对于这一点,我相信有的开发者并没有仔细的考虑过,只是在大家都有了这个功能后,我也应该具备,然而这背后其实还是有些值得东西去探索的,今天我们将看到为什么在这款游戏中一共

小白学数据分析------&gt;把握分析标准与敏感度

写在正文之前,想说几句话,今天是2012年3月16日,是我开博客以来的第9个月,9个月让我成长的非常迅速,这期间我收获了很多东西,认识了很多人,开了群,见了网站,持续的写博,从来没想到我的博客会有这么大的作用,从来没有SEO,从来没推广,从来没有任何宣传,我想到和我做的就是把我自己的成长纪录下来,把网游数据分析的点滴分享出来,当然我希望有人看,但是我毕竟不是高手,只是一个小白,小白只能是学习心得的纪录和整理,帮助自己理顺思路,很希望自己的文章有人看,因为那样就会有高手帮助我指点问题.今天 博客9