小白学数据分析-----> 有关于流失分析的探讨

早先我曾探讨一个关于流失分析的整套流程问题,也说了流失分析是如何的重要,大概这种解说是苍白无力的,因为拿不出数据来说明这个问题,因此大家就会感觉比较飘渺,今天就是流失分析再次进行探讨,这次从数据的角度来理解为什么要做好流失分析。

挽留一个老用户相比于拉动一个新用户,在游戏收入、产品周期维护方面都有好处的,只是我们现在解决用户入口的问题,但是没有重视用户流失的问题。这个问题就好像一个水池子,有进口,但是也有出口,我们不能只关注进口的进水速率,却忽略了出水口的出水速率。这点对应了我们对于指标的量化和关注,比如当今我们考虑和分析更多的是留存的问题,却鲜有讨论流失问题,不过也可以理解,因为移动互联网上大家都从平台,渠道获得海量用户,至于你愿不愿意待着,我们就不关心了。不过,移动互联网的手游行业却不能不关心,因为手游也是一种端游缩小后一种存在形式,一定意义上手游的分析应去借鉴端游的一些分析思路和管理方法。

因此,我们需要去做好流失分析,并不断的训练、实践。

今天我将利用一系列的指标,来说明流失问题,首先,列出来今天用到的指标:

MNU:月新增用户

MAU:月活跃用户

DAU/MAU:活跃比

M_Churn_Rate:月流失率

OMAU:老活跃用户

M_1-Churn_Rate:月存留用户率

首先我们要明确对于月流失用户的定义:

一般而言,上个月(自然月)登录过游戏但在本月未登录过游戏的用户数。

自然的,对于流失率就是这部分用户数占上个月月活跃的百分比。

针对流失率的计算一种是通过技术手段精确的按照定义进行计算,而另一种方式就是粗略的进行估计计算,此处,说一下如何进行粗略的计算,在后续的讲解中,也会用到此部分知识。

我们知道上个月的月活跃中存在两部分群体:

上个月月活跃用户构成中,一部分是上个月流失用户,另一部分就是过渡到下个月活跃用户中的存留用户。

而在下个月的用户中也存在两部分,一部分就是上个月过度来的存留用户,另一部分就是本月的新增用户。

至此我们得到两个等式

上个月MAU=流失用户+存留用户

本月的MAU=存留用户+本月新增

那么上个月流失用户=上个月MAU-本月的MAU+本月新增

上述的计算方式和通过技术手段计算的流失率基本一致,可以作为粗略估计使用。解决了流失率的计算问题,下面我们就能详细开始分析流失率背后的秘密。

之前在文章中说过,游戏产品是存在一个生命周期问题的,从具体游戏产品的一系列运营来看,产品经理CB、OB和商业化运营阶段,这里面是包含着流失问题的,而且在每个时期的策略和侧重是不同的,今天我将做一些假设,来分析流失,这样便于理解。

假设如下:

月导入新增用户为20000;

月1-Churn_Rate=20%(存留率为20%,即上个月登录过游戏,且本月又登录的用户比例为20%);

月流失率为80%;

DAU/MAU为0.15;

我们可以根据上述的指标进行下述的计算:

上线第一个月

已知:

MNU1=20000

M_1-Churn_Rate1=20%

M_Churn_Rate1=80%

DAU/MAU1=0.15

Old_User(老用户)1=0

那么:

平均的DAU1=0.15*20000=3000

MAU1=20000

上线第二个月

已知:

MNU2=20000

M_1-Churn_Rate2=20%

M_Churn_Rate2=80%

DAU/MAU2=0.15

MAU1=20000

那么:

Old_User(老用户)2=MAU1* M_1-Churn_Rate1=4000

MAU2= Old_User(老用户)2+ MNU2=24000

平均的DAU2=0.15*24000=3600

上线第三个月

……

按照以上的思路进行数据计算,最终能得出来一些数据。

下图为按照流失率80%,月导入量20000进行的计算。

下图为按照流失率70%,月导入量20000进行的计算。

下图为按照流失率60%,月导入量20000进行的计算。

下图为按照流失率90%,月导入量20000进行的计算。

如果大家仔细观察会发现,流失率处于不同水平,反馈的MAU以及DAU都是有差异的,这点差异就是因为流失率的变化引起的。

说到此处,再仔细观察,会发现,流失率达到90%时,基本在第四个月游戏的增长就停滞了,而为80%时,在第6个月开始增长停滞了,70%时在第8个月增长停滞了,60%时在第12个月增长停滞了。也就是说流失率水平的高低也刺激了游戏的用户量变化情况,从游戏设计的角度来看这点是因为游戏大量用户流失,对新用户进入带来一种负面的反馈,对于来用户而言,则生存和游戏下去的信心不足。时间久了,用户群流失就打破游戏原本稳定的环境,此时我们一般通过加大新用户的注入来解决办法。

以上是从游戏角度来解释问题的,下面从数学角度简单的解释一下为什么到了一定的时候,后期数据变化减小,基本上达到了稳定状态。

我们了解到

注:1-Churn_Rate简写为CR%

MAU1=MUN1

MAU2=MAU1*CR1%+MUN2

MAU3=MAU2*CR2%+MNU3

MAU4=MAU3*CR3%+MNU4

……

那么

MAUn=MAUn-1 *CRn-1%+MNUn,且MNUn-1=MNUn-2=…=MNU1,CRn-1%=CRn-2%=…=CR1%,即有

MAUn=MNU*(CR%^n-1+ CR%^n-2+…+ CR1%+1)

由上述等式,可以发现,随着n逐渐增大到一定阶段,对于MAU的影响就变得越来越小。逐步稳定。

侧面来看,如果CR%本身就很小那么这种影响就更小了,也就是说MAU变化很小,但是相对应的流失率就会居高不下,游戏处于了一个放水内耗的时期。

以上是利用一些指标对于流失率进行了一个探讨分析,其实重点就是说流失分析对于一款游戏而言是非常重要的,小处来说是挽留用户,避免流失,大处来说是拉长产品生命周期。

后记:文中所用计算方式和方法作为探讨之用,不妥和纰漏之处望各位斟酌使用,如有以为和错误,欢迎指出,不胜感激。

时间: 2024-10-23 05:53:24

小白学数据分析-----> 有关于流失分析的探讨的相关文章

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->首次购买记录分析方法

最近几天比较忙,大家都在问如何建立比较完整和有效的数据分析平台,说实话这个问题我考虑了很久,有效并有深度得数据挖掘与分析平台对于游戏产品的质量改善,人气.收益的提升,玩家资源的保有 ,客群分析非常有必要.众多经分系统的好处不在此处解释,且看今天讨论的内容,首次购买记录分析. 在如今道具收费的免费游戏中,首次购买记录的分析发挥着巨大的作用,这与电商的购买不太一样,还是存在很大的区别.道具收费的游戏中,道具购买是我们收益的主体,如何对于道具购买的分析是非常重要的一环. 由于道具收费的免费游戏,玩家存

小白学数据分析------>相关分析之距离分析在道具购买量的应用探索

  前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的.今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析.插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍.大

小白学数据分析----->如何设计和分析数据指标

今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标.在<移动游戏运营数据分析指标白皮书>(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析.白皮书的指标旨在规范大家对于一些最基本最常用概念的认识和学习,有所领悟,有所发挥. 而今天

小白学数据分析-----&gt;从购买记录分析道具支付环节

昨天发现充值异常增高,于是准备做一次详尽的分析,但是当我开始提取数据时,发现了一件比较异常的事情,这是在查询玩家的购买记录时发现的(这是因为往往我们要分析充值时,也要辅助的去看一下当日的购买情况),截图如下: 可以看得到玩家对于该道具的购买需求很高,在一段时间内不断的购买,但是商城不支持批量购买,玩家每次交易只能买一件,然后再次点击再次购买.看到这里,我点蛋疼了. 针对这个问题,昨晚和BOSS聊了一些,就是在讨论商城购买支付环节的问题.总的理解起来是目前的商城购买UI已经是确定符合玩家的习惯的U

小白学数据分析-----&gt;付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析-----&gt;数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析-----&gt;流失分析设计

前段时间说过一些关于玩家生命周期的问题,其实那些有点大,有点虚,从宏观的角度了解我们此时此刻正在做的分析是属于那一部分,哪一个体系的,说实话,这是为了建立一种意识而要做的工作,玩家生命周期价值源于电信行业的客户生命周期管理和PLC(产品生命周期)的解读和应用,限于本人水平和能力因素,不够深刻,全面,在此请各位谅解,以后的内容会逐步深入到这个体系之下的很多细节的问题探讨,今天就和大家简单说说流失率. 说到流失率,我们可以考察,可以分析,可以利用的点实在是太多了,这里我也不可能把所有的东西都覆盖,仅

小白学数据分析之关联分析理论篇

关联分析的学习 在说关联分析之前,先说说自己这段时间的一些感受吧,这段时间相对轻松一些,有一些时间自己自己来学习一些新东西和知识,然而却发现捧着一本数据挖掘理论的书籍在一点一点的研读实在是很漫长,而且看过了没有什么感觉.数据这一行理论很多,算法很多,模型很多,自己现在一直是结合业务来做的数据分析与挖掘,相比电商而言,游戏业做的数据大多很糙,但是仅仅结合业务和运营,更加注重我们客户的质量和维护,当然这不是说电商没做,实际上电商一直在做,然而最近一次经历发现,我们过多的时候去讨论了算法,模型,新理论