1. Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$, $$\bex {\bf j}_f=\sigma({\bf E}+{\bf u}\times{\bf B}) =\sigma({\bf E}+\mu_0{\bf u}\times{\bf H}). \eex$$
2. 由于等离子体是良导体, $\sigma\gg 1$, 而 $\eqref{3_2_1_Maxwell}_4$ 中 $\cfrac{\p {\bf D}}{\p t}$ 可忽略, 成为 $$\bee\label{3_2_1_Maxwell_4} \rot{\bf H}=\sigma({\bf E}+\mu_0{\bf u}\times{\bf H}). \eee$$
3. 等离子体中, $E\ll H$, 故只考虑 ${\bf H}$ 的运动 (消去 ${\bf E}$): $$\beex \bea &\quad {\bf E}=\cfrac{1}{\sigma}\rot{\bf H}-\mu_0{\bf u}\times{\bf H}\\ &\ra \cfrac{\p {\bf H}}{\p t} =-\cfrac{1}{\sigma\mu_0}\rot\rot{\bf H}+\rot({\bf u}\times{\bf H})\quad(\eqref{3_2_1_Maxwell}_2)\\ &\quad\quad\quad\ =\cfrac{1}{\sigma \mu_0}\lap{\bf H} +\rot({\bf u}\times{\bf H}). \eea \eeex$$