linux内核自旋锁API

我们大概都了解,锁这种机制其实是为了保护临界区代码的,关于使用和定义,我总结的API如下:

#include <linux/spinlock.h>

定义自旋锁
spinlock_t lock;

初始化自旋锁
void spin_lock_init(spinlock_t *lock);

获取自旋锁
void spin_lock(spinlock_t *lock);
int spin_trylock(spinlock_t *lock);  返回非0成功获取锁

不可抢占内核: 两个函数都是空操作
单CPU可抢占:  两个函数都是禁止当前进程被抢占
多CPU:        spin_lock:    禁止抢占, 获取锁, 如果不能获取锁将一直循环
		      spin_trylock: 禁止抢占, 获取锁, 如果不能获取锁马上返回

释放自旋锁
void spin_unlock(spinlock_t *lock);

void spin_lock_irq(spinlock_t *lock);
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
void spin_lock_bh(spinlock_t *lock);

void spin_unlock_irq(spinlock_t *lock);
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);
void spin_unlock_bh(spinlock_t *lock);
时间: 2024-09-19 21:48:18

linux内核自旋锁API的相关文章

大话Linux内核中锁机制之原子操作、自旋锁【转】

转自:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,然

大话Linux内核中锁机制之原子操作、自旋锁

转至:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,

大话Linux内核中锁机制之内存屏障、读写自旋锁及顺序锁

大话Linux内核中锁机制之内存屏障.读写自旋锁及顺序锁     在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入

大话Linux内核中锁机制之RCU、大内核锁

大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界

大话Linux内核中锁机制之信号量、读写信号量

大话Linux内核中锁机制之信号量.读写信号量 在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容.  六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的

大话Linux内核中锁机制之完成量、互斥量

大话Linux内核中锁机制之完成量.互斥量 在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题.  八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元

VIM快速索引Linux内核中的API

在源码目录下: Ctag -R .    前提是已经安装了Ctag这个工具 然后会目录下生成索引文件. 如何搜索: ep: vim -t  memcpy   回车 会出现索引,按esc两次,根据信息提示选择标号进入API 进到API后 : ctrl + ] 进入另一个api,返回 ctrl + o 如果要在一个文件中找本文件中没有的API,可以到VIM的命令行模式,按esc,然后:  ep : 输入 ,回车  cstag   memcpy 跳回来一样是ctrl + o 

Linux 内核里的数据结构——基数树

Linux 内核里的数据结构--基数树 正如你所知道的,Linux内核提供了许多不同的库和函数,它们实现了不同的数据结构和算法.在这部分,我们将研究其中一种数据结构--基数树Radix tree.在 Linux 内核中,有两个文件与基数树的实现和API相关: include/linux/radix-tree.h lib/radix-tree.c 让我们先说说什么是 基数树 吧.基数树是一种 压缩的字典树compressed trie ,而字典树是实现了关联数组接口并允许以键值对 方式存储值的一种

Linux 内核同步之自旋锁与信号量的异同【转】

转自:http://blog.csdn.net/liuxd3000/article/details/8567070 Linux 设备驱动中必须解决的一个问题是多个进程对共享资源的并发访问,并发访问会导致竞态,linux 提供了多种解决竞态问题的方式,这些方式适合不同的应用场景.   Linux 内核是多进程.多线程的操作系统,它提供了相当完整的内核同步方法.内核同步方法列表如下: 中断屏蔽 原子操作 自旋锁 读写自旋锁 顺序锁 信号量 读写信号量 BKL (大内核锁) Seq 锁 一.并发与竞态