第2章
频繁模式、关联规则和相关规则挖掘
本章中,我们将首先学习如何用R语言挖掘频繁模式、关联规则及相关规则。然后,我们将使用基准数据评估所有这些方法以便确定频繁模式和规则的兴趣度。本章内容主要涵盖以下几个主题:
关联规则和关联模式概述
购物篮分析
混合关联规则挖掘
序列数据挖掘
高性能算法
关联规则挖掘算法可以从多种数据类型中发现频繁项集,包括数值数据和分类数据。根据不同的适用环境,关联规则挖掘算法会略有差异,但大多算法都基于同一个基础算法,即Apriori算法。另一个基础算法称为FP-Growth算法,与Apriori算法类似。大多数的与模式相关的挖掘算法都是来自这些基础算法。
将找到的频繁模式作为一个输入,许多算法用来发现关联规则或相关规则。每个算法仅仅是基础算法一个变体。
随着不同领域中的数据集大小和数据类型的增长,提出了一些新的算法,如多阶段算法、多重散列算法及有限扫描算法。
时间: 2024-09-16 13:45:08