【题目】
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
【分析】
无
【代码】
/********************************* * 日期:2014-12-24 * 作者:SJF0115 * 题目: 110.Balanced Binary Tree * 来源:https://oj.leetcode.com/problems/balanced-binary-tree/ * 结果:AC * 来源:LeetCode * 总结: **********************************/ #include <iostream> #include <algorithm> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isBalanced(TreeNode *root) { if(balancedHeight(root) == -1){ return false; } else{ return true; }//if } private: // 如果是平衡二叉树返回该二叉树的高度 // 否则返回-1 int balancedHeight(TreeNode *node){ if(node == NULL){ return 0; }//if // 左子树高度 int left = balancedHeight(node->left); // 右子树高度 int right = balancedHeight(node->right); // 左右子树高度差不超过1 if(abs(left - right) > 1 || left < 0 || right < 0){ // -1代表不满足平衡二叉树要求 return -1; }//if return max(left,right)+1; } }; //按先序序列创建二叉树 int CreateBTree(TreeNode*& T){ int data; //按先序次序输入二叉树中结点的值,-1表示空树 cin>>data; if(data == -1){ T = NULL; } else{ T = new TreeNode(data); //构造左子树 CreateBTree(T->left); //构造右子树 CreateBTree(T->right); } return 0; } int main() { Solution solution; TreeNode* root(0); CreateBTree(root); cout<<solution.isBalanced(root); }
【复杂度】
时间复杂度 O(n),空间复杂度 O(logn)
时间: 2024-10-20 22:55:16