数据结构之红黑树详解_C 语言

1.简介

红黑树是一种自平衡二叉查找树。它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除等操作。

本文介绍了红黑树的基本性质和基本操作。

2.红黑树的性质

红黑树,顾名思义,通过红黑两种颜色域保证树的高度近似平衡。它的每个节点是一个五元组:color(颜色),key(数据),left(左孩子),right(右孩子)和p(父节点)。

红黑树的定义也是它的性质,有以下五条:

性质1. 节点是红色或黑色

性质2. 根是黑色

性质3. 所有叶子都是黑色(叶子是NIL节点)

性质4. 如果一个节点是红的,则它的两个儿子都是黑的

性质5. 从任一节点到其叶子的所有简单路径都包含相同数目的黑色节点。

这五个性质强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。为什么呢?性质4暗示着任何一个简单路径上不能有两个毗连的红色节点,这样,最短的可能路径全是黑色节点,最长的可能路径有交替的红色和黑色节点。同时根据性质5知道:所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。

3.红黑树的基本操作

因为红黑树也是二叉查找树,因此红黑树上的查找操作与普通二叉查找树上的查找操作相同。然而,红黑树上的插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑树的性质需要少量(O(log n))的颜色变更(实际是非常快速的)和不超过三次树旋转(对于插入操作是两次)。虽然插入和删除很复杂,但操作时间仍可以保持为 O(log n) 次。

3.1插入操作

插入操作可以概括为以下几个步骤:

(1)查找要插入的位置,时间复杂度为:O(N)

(2)将新节点的color赋为红色

(3)自下而上重新调整该树为红黑树

其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以将新插入的节点的颜色赋为红色,是因为:如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整,这样简单多了。下面讨论步骤(3)的一些细节:

设要插入的节点为N,其父节点为P,其父亲G的兄弟节点为U(即P和U是同一个节点的两个子节点)。

[1] 如果P是黑色的,则整棵树不必调整便是红黑树。

[2] 如果P是红色的(可知,其父节点G一定是黑色的),则插入z后,违背了性质4,需要进行调整。调整时分以下3种情况:

(a)N的叔叔U是红色的

如上图所示,我们将P和U重绘为黑色并重绘节点G为红色(用来保持性质5)。现在新节点N有了一个黑色的父节点P,因为通过父节点P或叔父节点U的任何路径都必定通过祖父节点G,在这些路径上的黑节点数目没有改变。但是,红色的祖父节点G的父节点也有可能是红色的,这就违反了性质4。为了解决这个问题,我们在祖父节点G上递归调整颜色。

(b)N的叔叔U是黑色的,且N是右孩子

如上图所示,我们对P进行一次左旋转调换新节点和其父节点的角色; 接着,按情形(c)处理以前的父节点P以解决仍然失效的性质4。

(c)N的叔叔U是黑色的,且N是左孩子

如上图所示,对祖父节点G 的一次右旋转; 在旋转产生的树中,以前的父节点P现在是新节点N和以前的祖父节点G 的父节点, 然后交换以前的父节点P和祖父节点G的颜色,结果的树满足性质4,同时性质5[4]也仍然保持满足。

3.2删除操作

删除操作可以概括为以下几个步骤:

(1)查找要删除位置,时间复杂度为:O(N)

(2)用删除节点后继或者节点替换该节点(只进行数据替换即可,不必调整指针,后继节点是中序遍历中紧挨着该节点的节点,即:右孩子的最左孩子节点)

(3)如果删除节点的替换节点为黑色,则需重新调整该树为红黑树

其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以用后继节点替换删除节点,是因为这样可以保证该后继节点之上仍是一个红黑树,而后继节点可能是一个叶节点或者只有右子树的节点,这样只需用有节点替换后继节点即可达到删除的目的。如果需要删除的节点有两个儿子,那么问题可以被转化成删除另一个只有一个儿子的节点的问题。(没看懂???可参考:http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91 )在第(3)步中,如果,如果删除节点为红色节点,则他的父亲和孩子全为黑节点,这样直接删除该节点即可,不必进行任何调整。如果删除节点是黑节点,分四种情况:

设要删除的节点为N,其父节点为P,其兄弟节点为S。

由于N是黑色的,则P可能是黑色的,也可能是红色的,S也可能是黑色的或者红色的

(1)S是红色的

此时P肯定是红色的。我们对N的父节点进行左旋转,然后把红色兄弟转换成N的祖父。我们接着对调 N 的父亲和祖父的颜色。尽管所有的路径仍然有相同数目的黑色节点,现在 N 有了一个黑色的兄弟和一个红色的父亲,所以我们可以接下去按 (2)、(3)或(4)情况来处理。

(2)S和S的孩子全是黑色的

在这种情况下,P可能是黑色的或者红色的,我们简单的重绘S 为红色。结果是通过S的所有路径,它们就是以前不通过 N 的那些路径,都少了一个黑色节点。因为删除 N 的初始的父亲使通过 N 的所有路径少了一个黑色节点,这使事情都平衡了起来。但是,通过 P 的所有路径现在比不通过 P 的路径少了一个黑色节点。接下来,要调整以P作为N递归调整树。

(3)S是黑色的,S的左孩子是红色,右孩子是黑色

这种情况下我们在 S 上做右旋转,这样 S 的左儿子成为 S 的父亲和 N 的新兄弟。我们接着交换 S 和它的新父亲的颜色。所有路径仍有同样数目的黑色节点,但是现在 N 有了一个右儿子是红色的黑色兄弟,所以我们进入了情况(4)。N 和它的父亲都不受这个变换的影响。

(4)S是黑色的,S的右孩子是红色

在这种情况下我们在 N 的父亲上做左旋转,这样 S 成为 N 的父亲和 S 的右儿子的父亲。我们接着交换 N 的父亲和 S 的颜色,并使 S 的右儿子为黑色。子树在它的根上的仍是同样的颜色,所以属性 3 没有被违反。但是,N 现在增加了一个黑色祖先: 要么 N 的父亲变成黑色,要么它是黑色而 S 被增加为一个黑色祖父。所以,通过 N 的路径都增加了一个黑色节点。

4.参考资料

(1)《算法导论》,第二版

(2) http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91

时间: 2024-09-29 22:56:26

数据结构之红黑树详解_C 语言的相关文章

数据结构之伸展树详解_C 语言

1. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合.建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构. 从算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比.对一个含n个节点的完全二叉树,这些操作的最坏情况运行时间为O(log n).但如果因为频繁的删除和插入操作,导致树退化成一个n个节点的线性链(此时即为一个单链表

数据结构之AVL树详解_C 语言

1. 概述 AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis.AVL树种查找.插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.本文介绍了AVL树的设计思想和基本操作. 2. 基本术语 有四种种情况可能导致二叉查找树不平衡,分别为: (1)LL:插入一个新节点到根节点的左子树(Left)的左子树

数据结构之Treap详解_C 语言

1. 概述 同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级.Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质.因而,Treap=tree+heap.这里需要注意的是,Treap并不是二叉堆,二叉堆必须是完全二叉树,而Treap可以并不一定是. 2. Treap基本操作 为了使Treap 中的节点同时满足BST性质和最小堆性质,不可避免地要对其结构进行调整,调整方式被称为旋转.在维护Treap 的过程中,只有两种旋转,分别是

C语言 经典题目螺旋矩阵 实例详解_C 语言

C语言 经典题目螺旋矩阵 //N阶螺旋矩阵 #include <stdio.h> #include <stdlib.h> int main() { int N,i,j,n,num=1; int a[10][10]={0}; printf("输入你要输出的几阶中断:"); scanf("%d",&N); for(n=0;n<=N/2;n++) { for(j=n;j<=N-n-1;j++) a[n][j]=num++; fo

红黑树的使用详解_C 语言

(学习的参考资料主要是<算法导论>) 首先是红黑树的性质.一棵二叉查找树满足以下的红黑性质,则为一棵红黑树. 1)每个结点或是红的,或是黑的. 2)根结点是黑的. 3)每个叶结点(NIL)是黑的. 4)红结点的两个孩子都是黑的. 5)对任意结点,从它到其子孙结点所有路径上包含相同数目的黑结点. 初学时并不在意,但是仔细研究相关算法就会知道,算法都是围绕保持这些性质来进行的.性质5)保证了红黑树使用时的高效.定理证明了n个内结点的红黑树高度至多为2lg(n+1).   不同于一般二叉查找树,红黑

C迷途指针详解_C 语言

本文较为详尽的讲述了C语言的迷途指针,分析了其概念.原理与检测方法.分享给大家供大家参考.具体如下: 一般来说,在计算机编程领域中,迷途指针,或称悬空指针.野指针,指的是不指向任何合法的对象的指针. 当所指向的对象被释放或者收回,但是对该指针没有作任何的修改,以至于该指针仍旧指向已经回收的内存地址,此情况下该指针便称迷途指针.若操作系统将这部分已经释放的内存重新分配给另外一个进程,而原来的程序重新引用现在的迷途指针,则将产生无法预料的后果.因为此时迷途指针所指向的内存现在包含的已经完全是不同的数

浅谈c++中的stl中的map用法详解_C 语言

Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道.这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处. 下面举例说明什么是一对一的数据映射.比如一个班级中,每个学生的学号跟他的姓名就存在着一一

基于一致性hash算法 C++语言的实现详解_C 语言

    一致性hash算法实现有两个关键问题需要解决,一个是用于结点存储和查找的数据结构的选择,另一个是结点hash算法的选择.     首先来谈一下一致性hash算法中用于存储结点的数据结构.通过了解一致性hash的原理,我们知道结点可以想象为是存储在一个环形的数据结构上(如下图),结点A.B.C.D按hash值在环形分布上是有序的,也就是说结点可以按hash值存储在一个有序的队列里.如下图所示,当一个hash值为-2^20的请求点P查找路由结点时,一致性hash算法会按hash值的顺时针方向

C语言中操作进程信号的相关函数使用详解_C 语言

C语言signal()函数:设置信号处理方式头文件: #include <signal.h> 定义函数: void (*signal(int signum, void(* handler)(int)))(int); 函数说明:signal()会依参数signum 指定的信号编号来设置该信号的处理函数. 当指定的信号到达时就会跳转到参数handler 指定的函数执行. 如果参数handler 不是函数指针, 则必须是下列两个常数之一: 1.SIG_IGN 忽略参数signum 指定的信号. 2.