Apache Kylin权威指南2.4 构建Cube

2.4 构建Cube


本节将快速介绍构建Cube相关的操作说明和设置,因受到篇幅的限制,许多具体内容无法深入展开,读者可以从后续的第3章和第4章中获得更详细的介绍。

新创建的Cube只有定义,而没有计算的数据,它的状态是“DISABLED”,是不会被查询引擎挑中的。要想让Cube有数据,还需要对它进行构建。Cube的构建方式通常有两种:全量构建和增量构建;两者的构建步骤是完全一样的,区别只在于构建时读取的数据源是全集还是子集。

Cube的构建包含如下步骤,由任务引擎来调度执行。

1)创建临时的Hive平表(从Hive读取数据)。

2)计算各维度的不同值,并收集各Cuboid的统计数据。

3)创建并保存字典。

4)保存Cuboid统计信息。

5)创建HTable。

6)计算Cube(一轮或若干轮MapReduce)。

7)将Cube的计算结果转成HFile。

8)加载HFile到HBase。

9)更新Cube元数据。

10)垃圾回收。

以上步骤中,前5步是为计算Cube而做的准备工作,例如遍历维度值来创建字典,对数据做统计和估算以创建HTable等;第6)步是真正的Cube计算,取决于所使用的Cube算法,它可能是一轮MapReduce任务,也可能是N(在没有优化的情况下,N可以被视作是维度数)轮迭代的MapReduce。由于Cube运算的中间结果是以SequenceFile的格式存储在HDFS上的,所以为了导入到HBase中,还需要第7)步将这些结果转换成HFile(HBase文件存储格式)。第8)步通过使用HBase BulkLoad工具,将HFile导入进HBase集群,这一步完成之后,HTable就可以查询到数据了。第9)步更新Cube的数据,将此次构建的Segment的状态从“NEW”更新为“READY”,表示已经可供查询了。最后一步,清理构建过程中生成的临时文件等垃圾,释放集群资源。

Monitor页面会显示当前项目下近期的构建任务。图2-19显示了一个正在运行的Cube构建的任务,当前进度为46%多。

 

图2-19 任务列表

单击任务右边的“”按钮,展开可以得到任务每一步的详细信息,如图2-20所示。

如果任务中的某一步是执行Hadoop任务的话,那么会显示Hadoop任务的链接,单击即可跳转到对应的Hadoop任务监测页面,如图2-21所示。

如果任务执行中的某一步出现报错,那么任务引擎会将任务状态置为“ERROR”并停止后续的执行,等待用户排错。在错误排除之后,用户可以单击“Resume”从上次失败的地方恢复执行。或者如果需要修改Cube或重新开始构建,那么用户需要单击“Discard”来丢弃此次构建。

接下来将介绍几种不同的构建方式。

 

图2-21 MapReduce任务监测页面

2.4.1 全量构建和增量构建

1.?全量构建

对数据模型中没有指定分割时间列信息的Cube,Kylin会采用全量构建,即每次从Hive中读取全部的数据来开始构建。通常它适用于以下两种情形。

事实表的数据不是按时间增长的。

事实表的数据比较小或更新频率很低,全量构建不会造成太大的开销。

2.?增量构建

增量构建的时候,Kylin每次都会从Hive中读取一个时间范围内的数据,然后进行计算,并以一个Segment的形式进行保存。下次再构建的时候,会自动以上次结束的时间为起点时间,再选择新的终止时间进行构建。经过多次构建,Cube中将会有多个Segment依次按时间顺序进行排列,如Seg-1, Seg-2,…,Seg-N。查询的时候,Kylin会查询一个或多个Segment然后再做聚合计算,以便返回正确的结果给请求者。

使用增量构建的好处是,每次只需要对新增数据进行计算,从而避免了对历史数据进行重复计算。对于数据量很大的Cube,使用增量构建是非常有必要的。

图2-22是构建一个Segment的Cube时的输入框,需要用户选择时间范围。

 

图2-22 提交增量构建

在从Hive读取源数据的时候,Kylin会带上此时间条件,如图2-23所示。

 

图2-23 增量构建的SQL

增量构建抽取数据的范围,采用了前包后闭的原则,即包含了开始时间,但不包含结束时间,从而保证上一个Segment的结束时间与下一个Segment的起始时间相同,但数据不会重复。

下一次构建的时候,起始时间必须是上一次的结束时间。如果使用Kylin的Web GUI触发,那么起始时间会被自动填写,用户只需要选择结束时间。如果使用Rest API触发,用户则需要确保时间范围不会与已有的Segment有重合。

2.4.2 历史数据刷新

Cube构建完成以后,如果某些历史数据发生了改动,那么需要针对相应的Segment进行重新计算,这种构建称为刷新。刷新通常只针对增量构建的Cube而言,因为全量构建的Cube只要重新全部构建就可以得到更新;而增量更新的Cube因为有多个Segment,因此需要先选择要刷新的Segment,然后再进行刷新。

图2-24是提交刷新的请求页面,用户需要在下拉列表中选择一个时间区间。

 

图2-24 刷新已有的Segment

提交以后,生成的构建任务与最初的构建任务完全一样。

在刷新的同时,Cube仍然可以被查询,只不过返回的是陈旧数据。当Segment刷新完毕时,新的Segment会立即生效,查询开始返回最新的数据。老Segment则成为垃圾,等待回收。

2.4.3 合并

随着时间的迁移,Cube中可能会存在较多数量的Segment,使得查询性能下降,并且会给HBase集群管理带来压力。对此,需要适时地将一些Segment进行合并,将若干个小Segment合并成较大的Segment。

合并的好处具体如下。

合并相同的Key,从而减少Cube的存储空间。

由于Segment减少了,因此可以减少查询时的二次聚合,提高了查询性能。

HTable的数量得以减少,更便于集群的管理。

下面来看看合并的操作步骤,图2-25中的Cube有两个Segment。

现在触发一个合并,单击Actions →Merge;选择要合并的起始Segment和结束Segment,生成一个合并的任务,如图2-26所示。

 

图2-26 提交合并任务

合并的时候,Kylin将直接以当初各个Segment构建时生成的Cuboid文件作为输入内容,而不需要从Hive加载原始数据。后续的步骤跟构建时基本一致。直到新的HTable加载完成后,Kylin才会卸载旧的HTable,从而确保在整个合并过程中,Cube都是可以查询的。

合并完成之后,此Cube的Segment减少为1个,如图2-27所示。

时间: 2025-01-26 21:51:54

Apache Kylin权威指南2.4 构建Cube的相关文章

Apache Kylin权威指南2.3 设计Cube

2.3 设计Cube 如果数据已经在Hive中准备好了,并且已经满足了2.2节中介绍的条件,那么就可以开始设计和创建Cube了.本节将按通常的步骤介绍Cube是如何进行创建的. 2.3.1 导入Hive表定义 登录Kylin的Web界面,创建新的或选择一个已有的项目之后,需要做的就是将Hive表的定义导入到Kylin中. 单击Web界面的Model→Data source下的"Load Hive Table"图标,然后输入表的名称(可以一次导入多张表,以逗号分隔表名,如图2-1所示),

Apache Kylin权威指南3.1 为什么要增量构建

第3章 增量?构建 第2章介绍了如何构建Cube并利用其完成在线多维分析的查询.每次Cube的构建都会从Hive中批量读取数据,而对于大多数业务场景来说,Hive中的数据处于不断增长的状态.为了支持Cube中的数据能够不断地得到更新,且无需重复地为已经处理过的历史数据构建Cube,因此对于Cube引入了增量构建的功能. 我们将Cube划分为多个Segment,每个Segment用起始时间和结束时间来标志.Segment代表一段时间内源数据的预计算结果.在大部分情况下(例外情况见第4章"流式构建&

Apache Kylin权威指南1.5 Apache Kylin的主要特点

1.5 Apache Kylin的主要特点 Apache Kylin的主要特点包括支持SQL接口.支持超大数据集.秒级响应.可伸缩性.高吞吐率.BI工具集成等. 1.5.1 标准SQL接口 Apache Kylin以标准SQL作为对外服务的主要接口.因为SQL是绝大多数分析人员最熟悉的工具,同时也是大多数应用程序使用的编程接口.尽管Kylin内部以Cube技术为核心,对外却没有选用MDX(MultiDimensional eXpressions)作为接口.虽然MDX作为OLAP查询语言,从学术上

Apache Kylin权威指南导读

前 言 "麒麟出没,必有祥瑞." --中国古谚语 "于我而言,与Apache Kylin团队一起合作使Kylin通过孵化成为顶级项目是非常激动人心的,诚然,Kylin在技术方面非常振奋人心,但同样令人兴奋的是Kylin代表了亚洲国家,特别是中国,在开源社区中越来越高的参与度." --Ted Dunning Apache孵化项目副总裁,MapR首席应用架构师 今天,随着移动互联网.物联网.AI等技术的快速兴起,数据成为了所有这些技术背后最重要,也是最有价值的"

Apache Kylin权威指南1.4 Apache Kylin的技术架构

1.4 Apache Kylin的技术架构 Apache Kylin系统可以分为在线查询和离线构建两部分,技术架构如图1-4所示,在线查询的模块主要处于上半区,而离线构建则处于下半区.   图1-4 Kylin的技术架构 我们首先来看看离线构建的部分.从图1-4可以看出,数据源在左侧,目前主要是Hadoop Hive,保存着待分析的用户数据.根据元数据的定义,下方构建引擎从数据源抽取数据,并构建Cube.数据以关系表的形式输入,且必须符合星形模型(Star Schema)(更复杂的雪花模型在成文

Apache Kylin权威指南2.2 在Hive中准备数据

2.2 在Hive中准备数据 2.1节介绍了Kylin中的常见概念.本节将介绍准备Hive数据的一些注意事项.需要被分析的数据必须先保存为Hive表的形式,然后Kylin才能从Hive中导入数据,创建Cube. Apache Hive是一个基于Hadoop的数据仓库工具,最初由Facebook开发并贡献到Apache软件基金会.Hive可以将结构化的数据文件映射为数据库表,并可以将SQL语句转换为MapReduce或Tez任务进行运行,从而让用户以类SQL(HiveQL,也称HQL)的方式管理和

Apache Kylin权威指南2.7 小结

2.7 小结 本章介绍了使用Apache Kylin必备的基本概念,如星形数据模型.事实表.维表.维度.度量等,并在这些基础上快速创建了基于Sample Data的模型,构建Cube,最后执行SQL查询.带领读者体验了Apache Kylin的主要使用过程.后续的章节将继续展开和探讨这个过程中的一些关键技术,比如增量构建.可视化和Cube优化等.  

Apache Kylin权威指南3.5 小结

3.5 小结 增量构建是使用Apache Kylin的关键步骤.因为对于大多数使用场景,数据都是日积月累逐渐增长的.如何合理地安排增量构建,保证用户在Cube中可以及时查询到最新的数据,是Apache Kylin运行维护的日常.第4章将延续本章的内容,继续探讨流式构建,将Apache Kylin的数据延迟缩短到分钟级别.

Apache Kylin权威指南2.6 SQL参考

2.6 SQL参考 Apache Kylin支持标准SQL作为查询语言,但是SQL有很多变体,Kylin支持的只是SQL所有变体中的一个子集,并不是支持所有现存的SQL语句和语法.用户在使用Kylin之前,需要对Kylin所支持的SQL有一个了解,以避免走弯路. 首先,Kylin作为OLAP引擎,只支持查询,而不支持其他操作,如插入.更新等,即所有的SQL都必须是SELECT语句,否则Kylin会报错. 第二,查询Kylin中SQL语句的表名.列名.度量.连接关系时,需要至少跟一个Cube的模型