开发者自述:我是这样理解强化学习的

定义

强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。

它主要包含四个元素,agent,环境状态,行动,奖励,强化学习的目标就是获得最多的累计奖励。

让我们以小孩学习走路来做个形象的例子:

小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。

小孩就是 agent,他试图通过采取行动(即行走)来操纵环境(行走的表面),并且从一个状态转变到另一个状态(即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励(给巧克力吃),并且当他不能走路时,就不会给巧克力。

和监督式学习, 非监督式学习的区别

在机器学习中,我们比较熟知的是监督式学习,非监督学习,此外还有一个大类就是强化学习:

强化学习和监督式学习的区别:

监督式学习就好比你在学习的时候,有一个导师在旁边指点,他知道怎么是对的怎么是错的,但在很多实际问题中,例如 chess,Go,这种有成千上万种组合方式的情况,不可能有一个导师知道所有可能的结果。

而这时,强化学习会在没有任何标签的情况下,通过先尝试做出一些行为得到一个结果,通过这个结果是对还是错的反馈,调整之前的行为,就这样不断的调整,算法能够学习到在什么样的情况下选择什么样的行为可以得到最好的结果。

就好比你有一只还没有训练好的小狗,每当它把屋子弄乱后,就减少美味食物的数量(惩罚),每次表现不错时,就加倍美味食物的数量(奖励),那么小狗最终会学到一个知识,就是把客厅弄乱是不好的行为。

两种学习方式都会学习出输入到输出的一个映射,监督式学习出的是之间的关系,可以告诉算法什么样的输入对应着什么样的输出,强化学习出的是给机器的反馈 reward function,即用来判断这个行为是好是坏。

另外强化学习的结果反馈有延时,有时候可能需要走了很多步以后才知道以前的某一步的选择是好还是坏,而监督学习做了比较坏的选择会立刻反馈给算法。

而且强化学习面对的输入总是在变化,每当算法做出一个行为,它影响下一次决策的输入,而监督学习的输入是独立同分布的。

通过强化学习,一个 agent 可以在探索和开发(exploration and exploitation)之间做权衡,并且选择一个最大的回报。

exploration 会尝试很多不同的事情,看它们是否比以前尝试过的更好。

exploitation 会尝试过去经验中最有效的行为。

一般的监督学习算法不考虑这种平衡,就只是是 exploitative。

强化学习和非监督式学习的区别:

非监督式不是学习输入到输出的映射,而是模式。例如在向用户推荐新闻文章的任务中,非监督式会找到用户先前已经阅读过类似的文章并向他们推荐其一,而强化学习将通过向用户先推荐少量的新闻,并不断获得来自用户的反馈,最后构建用户可能会喜欢的文章的“知识图”。

主要算法和分类

从强化学习的几个元素的角度划分的话,方法主要有下面几类:

  • Policy based, 关注点是找到最优策略。
  • Value based, 关注点是找到最优奖励总和。
  • Action based, 关注点是每一步的最优行动。

我们可以用一个最熟知的旅行商例子来看,

我们要从 A 走到 F,每两点之间表示这条路的成本,我们要选择路径让成本越低越好:

那么几大元素分别是:

  • states ,就是节点 {A, B, C, D, E, F}
  • action ,就是从一点走到下一点 {A -> B, C -> D, etc}
  • reward function ,就是边上的 cost
  • policy,就是完成任务的整条路径 {A -> C -> F}

有一种走法是这样的,在 A 时,可以选的 (B, C, D, E),发现 D 最优,就走到 D,此时,可以选的 (B, C, F),发现 F 最优,就走到 F,此时完成任务。

这个算法就是强化学习的一种,叫做 epsilon greedy,是一种 Policy based 的方法,当然了这个路径并不是最优的走法。

此外还可以从不同角度使分类更细一些:

如下图所示的四种分类方式,分别对应着相应的主要算法:

Model-free:不尝试去理解环境, 环境给什么就是什么,一步一步等待真实世界的反馈, 再根据反馈采取下一步行动。

Model-based:先理解真实世界是怎样的, 并建立一个模型来模拟现实世界的反馈,通过想象来预判断接下来将要发生的所有情况,然后选择这些想象情况中最好的那种,并依据这种情况来采取下一步的策略。它比 Model-free 多出了一个虚拟环境,还有想象力。

Policy based:通过感官分析所处的环境, 直接输出下一步要采取的各种动作的概率, 然后根据概率采取行动。

Value based:输出的是所有动作的价值, 根据最高价值来选动作,这类方法不能选取连续的动作。

Monte-carlo update:游戏开始后, 要等待游戏结束, 然后再总结这一回合中的所有转折点, 再更新行为准则。

Temporal-difference update:在游戏进行中每一步都在更新, 不用等待游戏的结束, 这样就能边玩边学习了。

On-policy:必须本人在场, 并且一定是本人边玩边学习。

Off-policy:可以选择自己玩, 也可以选择看着别人玩, 通过看别人玩来学习别人的行为准则。

主要算法有下面几种,今天先只是简述:

1. Sarsa

Q 为动作效用函数(action-utility function),用于评价在特定状态下采取某个动作的优劣,可以将之理解为智能体(Agent)的大脑。

SARSA 利用马尔科夫性质,只利用了下一步信息, 让系统按照策略指引进行探索,在探索每一步都进行状态价值的更新,更新公式如下所示:

s 为当前状态,a 是当前采取的动作,s’ 为下一步状态,a’ 是下一个状态采取的动作,r 是系统获得的奖励, α 是学习率, γ 是衰减因子。

2. Q learning

Q Learning 的算法框架和 SARSA 类似, 也是让系统按照策略指引进行探索,在探索每一步都进行状态价值的更新。关键在于 Q Learning 和 SARSA 的更新公式不一样,Q Learning 的更新公式如下:

3. Policy Gradients

系统会从一个固定或者随机起始状态出发,策略梯度让系统探索环境,生成一个从起始状态到终止状态的状态-动作-奖励序列,s1,a1,r1,.....,sT,aT,rT,在第
t 时刻,我们让 gt=rt+γrt+1+... 等于 q(st,a) ,从而求解策略梯度优化问题。

4. Actor-Critic

算法分为两个部分:Actor 和 Critic。Actor 更新策略, Critic 更新价值。Critic 就可以用之前介绍的 SARSA 或者 Q Learning 算法。

5. Monte-carlo learning

用当前策略探索产生一个完整的状态-动作-奖励序列:

s1,a1,r1,....,sk,ak,rk~π

在序列第一次碰到或者每次碰到一个状态 s 时,计算其衰减奖励:

最后更新状态价值:

6. Deep-Q-Network

DQN 算法的主要做法是 Experience
Replay,将系统探索环境得到的数据储存起来,然后随机采样样本更新深度神经网络的参数。它也是在每个 action 和 environment
state 下达到最大回报,不同的是加了一些改进,加入了经验回放和决斗网络架构。

应用举例

强化学习有很多应用,除了无人驾驶,AlphaGo,玩游戏之外,还有下面这些工程中实用的例子:

1. Manufacturing

例如一家日本公司 Fanuc,工厂机器人在拿起一个物体时,会捕捉这个过程的视频,记住它每次操作的行动,操作成功还是失败了,积累经验,下一次可以更快更准地采取行动。

2. Inventory Management

在库存管理中,因为库存量大,库存需求波动较大,库存补货速度缓慢等阻碍使得管理是个比较难的问题,可以通过建立强化学习算法来减少库存周转时间,提高空间利用率。

3. Dynamic pricing

强化学习中的 Q-learning 可以用来处理动态定价问题。

4. Customer Delivery

制造商在向各个客户运输时,想要在满足客户的所有需求的同时降低车队总成本。通过 multi-agents 系统和 Q-learning,可以降低时间,减少车辆数量。

5. ECommerce Personalization

在电商中,也可以用强化学习算法来学习和分析顾客行为,定制产品和服务以满足客户的个性化需求。

6. Ad Serving

例如算法 LinUCB (属于强化学习算法 bandit 的一种算法),会尝试投放更广范围的广告,尽管过去还没有被浏览很多,能够更好地估计真实的点击率。

再如双 11
推荐场景中,阿里巴巴使用了深度强化学习与自适应在线学习,通过持续机器学习和模型优化建立决策引擎,对海量用户行为以及百亿级商品特征进行实时分析,帮助每一个用户迅速发现宝贝,提高人和商品的配对效率。还有,利用强化学习将手机用户点击率提升了
10-20%。

7. Financial Investment Decisions

例如这家公司 Pit.ai,应用强化学习来评价交易策略,可以帮助用户建立交易策略,并帮助他们实现其投资目标。

8. Medical Industry

动态治疗方案(DTR)是医学研究的一个主题,是为了给患者找到有效的治疗方法。 例如癌症这种需要长期施药的治疗,强化学习算法可以将患者的各种临床指标作为输入 来制定治疗策略。

作者:杨熹

来源:51CTO

时间: 2024-09-16 09:20:53

开发者自述:我是这样理解强化学习的的相关文章

强化学习全解;Facebook 机器学习@Scale 2017 资料汇总 | 开发者日报

强化学习全解 强化学习(Re-inforcement Learning) 是一种基于与环境互动的目标导向的学习.强化学习被认为是真正的人工智能的希望.作者认为这是正确的说法,因为强化学习拥有巨大的潜力. 据雷锋网(公众号:雷锋网)了解,很多人说,强化学习被认为是真正的人工智能的希望.本文从 7 个方面带你入门强化学习,读完本文,希望你对强化学习及实战中实现算法有着更透彻的了解. 详情:http://dataunion.org/27366.html Facebook 机器学习@Scale 2017

监督学习×强化学习,Facebook让聊天机器人学会谈判

雷锋网 AI 科技评论按:目前人们对聊天机器人的认识还在调戏微软小冰的阶段,可以明显感觉到小冰不是很关心上下文之间的关联.而且在我们的观念里,聊天机器人也没办法真的理解人类所说的话,没办法跟人类讨论事情.明确地达到什么共同目标. 不过,Facebook的人工智能研究机构FAIR刚刚开源并公开发表的聊天机器人就开始拥有了跟人类进行协商谈判.进行讨价还价的能力.通过监督学习+强化学习,这个聊天机器人不仅能理解字词和语义的对应关系,还能针对自己的目标制定策略,跟别人进行协商讨论达成一致. 以下为雷锋网

【双11背后的技术】基于深度强化学习与自适应在线学习的搜索和推荐算法研究

选自<不一样的技术创新--阿里巴巴2016双11背后的技术>,全书目录:https://yq.aliyun.com/articles/68637 本文作者:灵培.霹雳.哲予 1. 搜索算法研究与实践 1.1 背景 淘宝的搜索引擎涉及对上亿商品的毫秒级处理响应,而淘宝的用户不仅数量巨大,其行为特点以及对商品的偏好也具有丰富性和多样性.因此,要让搜索引擎对不同特点的用户作出针对性的排序,并以此带动搜索引导的成交提升,是一个极具挑战性的问题.传统的Learning to Rank(LTR)方法主要是

引入秘密武器强化学习,发掘GAN在NLP领域的潜力

1.基础:文本生成模型的标准框架文本生成(Text Generation)通过 机器学习 + 自然语言处理 技术尝试使AI具有人类水平的语言表达能力,从一定程度上能够反应现今自然语言处理的发展水平. 下面用极简的描述介绍一下文本生成技术的大体框架,具体可以参阅各种网络文献(比如:CSDN经典Blog"好玩的文本生成"[1]),论文等. 文本生成按任务来说,比较流行的有:机器翻译.句子生成.对话生成等,本文着重讨论后面两种. 基于深度学习的Text Generator 通常使用循环神经网

专访 | 阿里搜索事业部研究员徐盈辉:剖析阿里背后的强化学习技术

剖析阿里背后的强化学习技术 2013 年,DeepMind 在 NIPS 大会上发表的一篇深度强化学习的文章,一举惊艳了学术界.2016 年 1 月,AlphaGo 在一场围棋大赛中击败李世乭吸引全世界的目光,其背后的强大武器正是深度强化学习技术.同年年底,2016NIPS 最佳论文奖也颁给了解决深度强化学习泛化能力较弱问题的论文. 随着深度学习的突破性进展,也促使强化学习的研究前景,重新获得了产业各界的关注.2016 年 8 月,在 ACM(国际计算机学会)会刊一篇名为<强化学习的复兴>的文

NASA计划后,阿里又透露了在强化学习领域的布局

日前,阿里启动了一项代号"NASA"的计划,动员全球两万多名科学家和工程师投身"新技术战略",预计面向未来20年组建强大的独立研发部门,建立新的机制体制,储备核心科技.而就在不久前,阿里的强化学习技术刚刚入选MIT评选的2017全球十大突破技术榜单,科技媒体"机器之心"的记者最近对阿里巴巴研究员徐盈辉进行了专访,请他详细介绍了阿里在该技术领域的思考.布局以及对未来的判断. 以下是报道全文: 2013 年,DeepMind 在 NIPS 大会上发表

【专栏】谷歌资深工程师深入浅析AlphaGo Zero与深度强化学习

AlphaGo的巨大成功掀起了围棋界三千年未有之大变局,也使得深度强化学习(Deep Reinforcement Learning)渐为大众熟悉.尤其是最新推出的AlphaGo Zero完全摒弃了人类知识,并且三天内碾压了早期版本的AlphaGo,更足显强化学习和深度学习结合的巨大威力.AlphaGo Zero的论文侧重于描述效果,对于方法的论述比较简短,没有相关背景的人读起来可能会有一些困难.本文对强化学习以及AlphaGo Zero算法做了详细描述. 摘要 AlphaGo Zero无需任何人

专访阿里巴巴徐盈辉:深度学习和强化学习技术首次在双11中的大规模应用

12月6日-7日,由阿里巴巴集团.阿里巴巴技术发展部.阿里云联合主办,以"2016双11技术创新"为主题的阿里巴巴技术论坛(Alibaba Technology Forum,ATF)将在线举办.(https://yq.aliyun.com/promotion/139) 系列文章陆续发布: 专访阿里巴巴徐盈辉:深度学习和强化学习技术首次在双11中的大规模应用 专访阿里巴巴林伟:三项世界级挑战背后的思考.实践和经验 专访阿里巴巴魏虎:揭秘阿里双11背后的全站个性化&商铺千人千面 价

TensorFlow Agents日前开源,轻松在TF中构建并行强化学习算法

用于在TensorFlow中构建并行强化学习算法的高效基础架构范例TensorFlow Agents日前开源,这个项目是由谷歌的两位研究员James Davidson.Vincent Vanhoucke,以及Danijar Hafner共同研发的.关于这个项目的开源信息他们在GitHub上进行了介绍,雷锋网 AI 科技评论将内容进行编译整理. TensorFlow Agents TensorFlow Agents为强化学习提供了优化的基础架构,它将OpenAI gym接口扩展到多个并行环境,并能