Python的科学计算包 SciPy

问题描述

SciPy (pronounced "Sigh Pie") 是一个开源的数学、科学和工程计算包。示例代码:from scipy import optimize, specialfrom numpy import *from pylab import * x = arange(0,10,0.01) for k in arange(0.5,5.5): y = special.jv(k,x) plot(x,y) f = lambda x: -special.jv(k,x) x_max = optimize.fminbound(f,0,6) plot(, ,'ro')title('Different Bessel functions and their local maxima')show()ActionBarSherlock-4.4.0.part2.rar

时间: 2024-09-29 23:54:52

Python的科学计算包 SciPy的相关文章

由Python运算π的值深入Python中科学计算的实现_python

π是一个无数人追随的真正的神奇数字.我不是很清楚一个永远重复的无理数的迷人之处.在我看来,我乐于计算π,也就是计算π的值.因为π是一个无理数,它是无限的.这就意味着任何对π的计算都仅仅是个近似值.如果你计算100位,我可以计算101位并且更精确.迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π.一些极值包括 计算π的5亿位.你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开.).对于我而言,如何用几行简单的Py

Python多版本切换工具-Pyenv\virtualenv及Anaconda科学计算环境的配置

为了安装Anaconda科学计算环境,控制好python版本,今天上午总算折腾好了. 学习python有时希望在python2.7环境下,有时希望在python3.4环境下,该怎么办呢? Anconda的包也不知道适合在什么环境下工作? 解决多python环境下,python版本切换的工具--pyenv应运而生.同时,另外一个工具virtualenv则提供了一种功能, 就是将一个目录建立为一个虚拟的python环境, 这样的话, 用户可以建立多个虚拟环境, 每个环境里面的python版本可以是不

第二热门语言:从入门到精通,Python数据科学简洁教程

Python是一门通用的编程语言,在过去十年中被数据科学领域广泛使用.事实上,Python在数据科学领域是仅次于R的第二热门的编程语言. 本篇文章的主要目的在于向大家展示使用Python学习数据科学有多么的容易.你可能以为自己要先成为一名高级Python程序员,然后才能进行通常与数据科学相关的复杂任务,然而事实并非如此.Python附带了很多有用的工具库,它们可以在后台为你提供强大的支持.你甚至不需要知道程序在运行什么,你不必关心这些.唯一你真正需要知道的是,你需要执行一些特定的任务,而Pyth

Linux科学计算平台:使用Sage和Python计算数字

Linux 在科学团体中占有重要地位,这一点也不奇怪.解决方案种类繁多,从高性能计算集群到可视化软件都包含其中.甚至还有一个基于 Red Hat Enterprise Linux 且针对科学计算的完整 Linux 发行版,它被相应地命名为 Scientific Linux. Sage 和 Enthought Python Distribution 本文介绍使用 Linux 工作站进行科学计算的两种不同方法.第一种方法是 Sage 开源数学系统,第二种方法是 Enthought Python Di

Python科学计算环境推荐——Anaconda_python

Anaconda是一个和Canopy类似的科学计算环境,但用起来更加方便.自带的包管理器conda也很强大. 首先是下载安装.Anaconda提供了Python2.7和Python3.4两个版本,同时如果需要其他版本,还可以通过conda来创建.安装完成后可以看到,Anaconda提供了Spyder,IPython和一个命令行.下面来看一下conda. 输入 conda list 来看一下所有安装时自带的Python扩展.粗略看了一下,其中包括了常用的 Numpy , Scipy , matpl

Python数据科学安装Numby,pandas,scipy,matpotlib等(IPython安装pandas)

Python数据科学安装Numby,pandas,scipy,matpotlib等(IPython安装pandas) 如果还没有本地安装Python.IPython.notebook等请移步 上篇Python,IPython,qtconsole,Notebook,Jupyter快速安装教程 本教程是安装二进制文件,以Windows10 64位操作系统为例,但是二进制文件对应其他Linux和mac os也同样试用. 在开始安装之前,请注意以下前提条件.否则,会出现各种问题. 默认机器上已经安装了P

《Python数据科学指南》——2.2 使用NumPy库

2.2 使用NumPy库 Python中,NumPy提供了一条高效处理超大数组的途径.大多数Python科学计算库中都在内部使用NumPy处理数组和矩阵操作.在本书中,NumPy被广泛应用,我们在本节介绍它. 2.2.1 准备工作 我们先写一系列语句来操作数组和矩阵,学习如何使用NumPy.目的是让您习惯使用NumPy数组,它也是本书大多数内容的基础. 2.2.2 操作方法 我们先创建一些简单的矩阵和数组. # Recipe_1a.py # 导入NumPy库,命名为np import numpy

《Python数据科学实践指南》——0.3 为什么是Python

0.3 为什么是Python 通过书名,各位读者就应该知道这是一本讲解Python编程的书了.数据科学只是个引子,我希望能通过相关的例子和练习激发出读者的兴趣,帮助读者除掉编程这条拦路虎.在很多非计算机相关专业的人的概念里,编程是要归为玄学分类的,通过一堆意义不明的符号就能驱动计算机完成各种各样的任务,是不是有点像魔法师口中所念的咒语.但事实上,计算机只能做两件事情,执行计算并记录结果,只不过它的这两项能力远远超过人类大脑的能力(读者可能看过一些文章,其中有些研究声称尝试估算过人类大脑的计算能力

《Python数据科学实践指南》一0.3 为什么是Python

0.3 为什么是Python 通过书名,各位读者就应该知道这是一本讲解Python编程的书了.数据科学只是个引子,我希望能通过相关的例子和练习激发出读者的兴趣,帮助读者除掉编程这条拦路虎.在很多非计算机相关专业的人的概念里,编程是要归为玄学分类的,通过一堆意义不明的符号就能驱动计算机完成各种各样的任务,是不是有点像魔法师口中所念的咒语.但事实上,计算机只能做两件事情,执行计算并记录结果,只不过它的这两项能力远远超过人类大脑的能力(读者可能看过一些文章,其中有些研究声称尝试估算过人类大脑的计算能力