数据变“药方”,深度学习可以追踪肿瘤发展

技术创新正在变革医疗与健康产业,雷锋网持续关注医疗领域出现的软硬件创新,包括设备、数据,抑或对他们的创新运用。目前我们在招募医疗健康领域作者,负责采写报道医疗科技领域的企业与牛人。简历投递至zhangchi@leiphone.com,或加微信nksimons撩。

长期以来,医生都是用肉眼查看医学图像,来确定癌症治疗过程。不过来自Fraunhofer医学图像计算研究所的研究人员开发的软件,可以提示图片中的变化,用深度学习加速诊断过程。

在治疗过程中,医生需要回答肿瘤是否有收缩,是否有新的肿瘤发展,这样的问题。为此他们通常会进行CT和MRI扫描,然后观察图像进行评估。这一过程中难免出现差错,但软件可以确实肿瘤的体积如何随着时间的变化而变化,并帮助检测新肿瘤。这种新的程序由模块化的处理组件组成,可以帮助医疗技术制造商自动监测进度。

计算机自己学习

程序使用了深度学习技术,它有助于图像分割,期间专家会指定出精确的器官轮廓。现有的分割程序会根据清晰的图像特征来完成这一过程,比如一定的灰度值。但这往往会产生错误,比如软件会将不属于某一器官的区域分给它。这些错误要由医生来纠正,但通常很耗时。

新的深度学习方法则可以改善结果,节省时间。研究人员用149个患者的CT肝脏图像训练软件,结果表明,程序分析的数据越多,就越能自动识别出肝脏轮廓。

新方法的另一应用是图像配准,即软件会将不同条件下患者的图像进行匹配,方便医生进行比较。机器学习可以帮助定位躯干中的骨转移

(原发于身体其他部位的恶性肿瘤,通过各种途径转移至骨骼并在骨内继续生长所形成子肿瘤),这都是极困难的任务。目前,这种转移往往会因为临床诊断的时间限制而被忽视,但深度学习方法能帮助尽早发现,提高治疗效果。

现在,机器学习在医疗上的应用已经很普遍,有商业医疗软件加入了这类图像配准算法。雷锋网(公众号:雷锋网)曾介绍了12家用机器学习与癌症作战的公司,除了影像诊断,还涉及药物挖掘和风险预测等。或许,以后数据也会成为新的治疗“药方”。

本文作者:张驰

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-10-29 21:20:31

数据变“药方”,深度学习可以追踪肿瘤发展的相关文章

【BDTC2014观察】大数据会与深度学习划等号么?

2014中国大数据技术大会在12月14日正式落下帷幕,近百位技术专家在这里分享了他们的最新研究与实践成果,本文来自中国经济网经营顾问杨静,主要解读了大数据与深度学习之间的联系,以及未来行业技术的发展. 以下是作者原文: 2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办,以推进大数据科研.应用与产业发展为主旨的2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014

《深度学习导论及案例分析》-第1章 概述 1.1深度学习的起源和发展

第1章 概述 如何让机器从经验中学习长期以来都是哲学界和科学界的研究目标之一.学习能力对人类智能的形成和发展无疑起着至关重要的作用,而机器学习的研究显然有助于提高人工智能的水平.从原始的输入数据到产生意义的理解过程往往需要经过许多不同层次的信息处理.转换.表达和抽象,如果涉及的层次较深,深度学习的模型和方法就可能发挥重要作用.本章主要勾画深度学习的起源和发展.特点和优势.模型和算法. 1.1深度学习的起源和发展 作为一种实现人工智能的强大技术,深度学习(deep learning)已经在手写数字

《深度学习导论及案例分析》一 第1章 概述1.1深度学习的起源和发展

第1章 概述 如何让机器从经验中学习长期以来都是哲学界和科学界的研究目标之一.学习能力对人类智能的形成和发展无疑起着至关重要的作用,而机器学习的研究显然有助于提高人工智能的水平.从原始的输入数据到产生意义的理解过程往往需要经过许多不同层次的信息处理.转换.表达和抽象,如果涉及的层次较深,深度学习的模型和方法就可能发挥重要作用.本章主要勾画深度学习的起源和发展.特点和优势.模型和算法. 1.1深度学习的起源和发展 作为一种实现人工智能的强大技术,深度学习(deep learning)已经在手写数字

深度学习推动数据中心功率密度

上图:2017年2月,在伦敦科学博物馆举办的科学博物馆机器人展览会的预览上展示的世界首款安卓机器人新闻播报员Komoroid. GPU(或称图形处理单元)的应用程序已然远远超过了其本身.超级计算机设计人员们发现它们非常适合于从他们所建立的系统中的CPU卸载大量的工作负载;其也被证明是一种被称为深度学习(Deep Learning)的机器学习方法的超高效处理器.这正是Google公司用来提供有针对性的广告的AI类型,而亚马逊的Alexa则可以用于即时回答语音查询. 创建相应的算法,使得计算机能够通

深度学习如何改变数据科学范式?

深度学习正在改变一切.正如电子和计算机改变了人类所有的经济活动一样,人工智能将重塑零售业.交通运输业.制造业.医药.电信业.重工业--甚至数据科学本身.而且,像AlphaGo这种人工智能超越人类的领域及其应用在不断增长.在Schibsted,Manuel Sánchez Hernández看到了深度学习所提供的机会,他们很高兴为此而出力. Manuel Sánchez Hernández在最近的NIPS 2016(Neural Information Processing Systems,神经信

一文读懂机器学习、数据科学、人工智能、深度学习和统计学之间的区别

在这篇文章中,数据科学家与分析师 Vincent Granville 明晰了数据科学家所具有的不同角色,以及数据科学与机器学习.深度学习.人工智能.统计学.物联网.运筹学和应用数学等相关领域的比较和重叠.Granville 介绍说,由于数据科学是一个范围很广的学科,所以他首先介绍了在业务环境中可能会遇到的数据科学家的类型,你甚至可能会发现你自己原来也是某种数据科学家.和其它任何科学学科一样,数据科学也可能会从其它相关学科借用技术.当然,我们也已经开发出了自己的技术库,尤其是让我们可以以自动化的方

拒绝跟风,看机器学习、数据科学、人工智能、深度学习、统计学等的区别

本文作者Vincent Granville通过阐明数据科学家各种各样的角色,以及数据科学与相关领域的不同以及交叉,比如机器学习.深度学习.AI.IoT.统计学.运筹学和应用数学.PS,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps. 以下为译文 因为数据科学是个广义的学科,所以这里将从任何业务里都可能会遇到的数据科学家类型开始,通过这个部分或许你能发现自己隐藏的数据科学家潜质:)正如任何科学学科一样,

机器学习、数据科学、人工智能、深度学习、统计学等的区别

因为数据科学是个广义的学科,所以这里将从任何业务里都可能会遇到的数据科学家类型开始,通过这个部分或许你能发现自己隐藏的数据科学家潜质:)正如任何科学学科一样,数据科学家也可能向相关学科学习借鉴,尽管数据科学已经有自己的部分,尤其是自动处理超大规模非结构化数据的方式和算法,甚至不需要人为干涉,就可以做实时处理或者预测. 1. 数据科学家的各种类型 想要开始并且了解一些以前的观点,不妨参考2014年发布的文章" 9 types of data scientists"或者同年另一篇文章比较数

【AI业界剧震】英伟达禁止数据中心使用GeForce做深度学习

英伟达的CEO黄仁勋曾经说,他最喜欢三件事--游戏.GPU.深度学习.这三件事也是英伟达的命脉所在.5年前黄仁勋英明的判断将GPU从游戏转向深度学习成就了他自己和他的公司在深度学习界的地位. 不过,当一个市场被一家企业所主导,这家企业就可能采取各种措施,获取尽可能多的利润,甚至达到垄断的目的. 最近,日本公司Ubiquitous Entertainment总裁兼首席执行官清水亮撰文[1],指责英伟达悄然修改终端用户使用协议,禁止在数据中心使用GeForce软件,并称这一改动将会影响广大的深度学习