在以客户为中心的竞争环境中,如何既是能够拥有正确的信息,又能够拥有分析信息的工具,这就是商业智能(Business Intelligence)。商业智能系统通过数据仓库、数据挖掘和高级数据分析为企业提供全方位的客户分析决策支持和客户关系管理,其中最为关键的技术就是数据挖掘技术。数据挖掘技术是从大量数据中提取或挖掘知识,数据挖掘工具进行数据分析,可以发现重要的数据模式,为解决商务决策中“数据丰富,知识贫乏”作出了巨大的贡献。从电话中心变成了联络中心(Contact center)或“互动中心”(Interaction center);市场营销工具可以采用E-mail、IP语音、共享化浏览(shared browsing)、文字聊天和多种电子文字交流,以及客户与企业的整体关系成为企业迫切需要解决的问题。CRM通过管理企业与客户间的关系、优化供应链,减少销售环节,降低销售成本,挖掘潜在客户,发现新市场和渠道,提高客户价值、客户满意度、客户利润贡献度和忠诚度,实现企业最终销售管理、营销管理、客户服务与支持等方面的效果的提高。然而CRM失败率(国外55%~75%)也很高,这是由于CRM的实施中会遇到高度集成,企业文化,设计技术如XML基于组件等,个性化服务与自动化矛盾,基础网络设施,可扩展性等问题。CRM起源于20世纪80年代中期,20世纪90年代得到企业广泛重视,进入新世纪人们更加重视吸引和发现潜在的客户和留住最有价值的客户。统计表明,现代企业的销售额是来自12%的重要客户,而其余88%中的大部分客户对企业是微利甚至是微利可图,开发一个新客户的成本是留住一个老客户的5倍,而流失一个老客户的损失,需要争取到10个新客户才能弥补,因而CRM成为企业研究和应用的热点。如何成功的应用客户关系系统呢?利用数据挖掘技术来分析客户的数据,找出客户的购买模式,不断的满足客户的需求,把客户当作企业最重要的资产进行管理,是成功的应用CRM搞好企业的经营管理工作关键技术。
一、基于数据挖掘技术的客户行为分析与重点客户发现
目前许多企业在为客户的服务过程中积累了大量的数据,通过这些数据可以分析企业的发展历程、竞争态势、发展趋势及客户资源,这些资源是企业普遍关注的重要资源,而对客户的分析是赢利竞争优势的重要方法,从销售自动化(SPA)中,提供了记录和跟踪在客户的信息,提供了销售人员与潜在客户交流要点,以便有效地管理自己时间,安排与客户交流和沟通。而在电子商务环境下,接触客户不仅是销售人员,通过Internet把获取客户信息进一步扩展到企业所有部门,与之所有能与客户接触的所有人员,包括各种销售渠道(直销、网上购买、从零售处购买等)的人员。通过与客户的各种“接触点”(客户支持中心、市场营销活动、销售代表的联系等)对客户360度的认识。美国艾克通过长期以来总结的经验认为CRM应让客户更方便(convenient)、对客户更亲切(care)、个性化(personaliled)和立即反应(Real-time),才能更好地维持客户关系。凡成功地企业CRM一定是“以人为本,以客户为中心”去分工,实现企业内部“一对一客户观念”的确认。企业内部与客户相关的部门应该保持不同部门与客户之间作业的连贯;实现各种管理信息与知识的共享,建立较为详细的客户联系库,共同遵守的互动规则(contact Rule)。利用客户智能—通过分析来自营销、销售、服务和商务的信息,制定统一的关于客户需求服务的规则,以增加客户的满意程度和减少客户背离程度。数据挖掘成为识别好的客户,完成市场划分以及改进直销活动效果的关键工具(如图1,数据挖掘技术CRM中的作用)。
图1 数据挖掘技术在CRM中的作用
增加市场占有率有两种常用方法:以客户为基础的产品促销活动和交叉销售,数据挖掘技术能够实现哪些客户最有可能购买新产品以及哪些产品能够被一起购买,这样销售人员就能够将更多的精力放在这些重点客户上。Microsoft Commerce Server 2000是一个基于SQL Server 2000利用数据挖掘技术的快速实现商业智能的通用平台,它通过扩展基于OLE DB技术模式对象与CRM集成。它可以针对注册用户进行数据分析了解不同消费群体的购物行为,对未注册的用户则根据用户停留在该电子商务网站停留的时间、点过的连接、查询过的商品等记录分析出他们的行为模式;还可分析出广告、打折活动等营销方法的效果。