深度学习框架 MXNet 成为 Apache 孵化器项目


MXNet 是一个轻量级、可移植、灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 Apache 的孵化器项目。

MXNet 项目由 DMLC(Distributied (Deep) Machine Learning Community)创建,前期开发者主要是 CXXNet,Minerva 和 purine2 的作者。MXNet 项目于 2015 年 9 月开源,目前项目代码托管在 GitHub 上,已经拥有 200 多位贡献者。

MXNet 的初衷是想结合 Minerva 和 CXXNet 两者的功能:CXXNet 通过配置来定义和训练神经网络,所以在图片分类等使用卷积网络的应用上很方便;而 Minerva 提供类似 numpy 一样的张量计算接口,更灵活。MXNet 就是这样一个两者功能都具备的系统,其名字来自 Minerva 的 M 和 CXXNet 的 XNet,其中 Symbol 的想法来自 CXXNet,而 NDArray 的想法来自 Minerva。

目前主流的深度学习系统一般采用命令式编程(imperative programming,比如 Torch)或声明式编程(declarative programming,比如 Caffe,theano 和 TensorFlow)两种编程模式中的一种,而 MXNet 尝试将两种模式结合起来,在命令式编程上 MXNet 提供张量运算,而声明式编程中 MXNet 支持符号表达式。用户可以根据需要自由选择,同时,MXNet 支持多种语言的 API 接口,包括 Python、C++(并支持在 Android 和 iOS 上编译)、R、Scala、Julia、Matlab 和 JavaScript。

继上个月 Amazon 宣布将 MXNet 作为 AWS 的深度学习框架,号召开源社区为 MXNet 投入更多的努力(详见之前InfoQ的报道)之后,成为 Apache 孵化器项目是MXNet发展过程中的又一里程碑,以后 MXNet 必将不断优化完善,带来进一步的性能提升。

文章转载自 开源中国社区 [http://www.oschina.net]

时间: 2024-11-18 03:15:52

深度学习框架 MXNet 成为 Apache 孵化器项目的相关文章

2017年深度学习框架之争——看谁主沉浮?

在过去的两年多时间里,各大公司或研究机构推出自己的深度学习框架,比如Caffe.TensorFlow等,并且关于深度学习相关的框架也在随着时间不断地发生变化.Theano是第一个被广泛使用的深度学习框架,该框架是由深度学习领域中的大牛Yoshua Bengio牵头.MILA创建.然而,在今年的九月份,MILA宣布在2018年更新完最后一版Theano后,将不再继续开发该框架.这一消息来得并不是很出人意外.在过去的几年里,一些不同的开源Python深度学习框架被引入,这些深度学习框架通常是由一家大

财富:亚马逊采用 MXNet ,巨头间深度学习框架之争白热化

随着人工智能的发展,现代科技公司的终极目标是构建无需人类介入.能够自我思考的 AI 软件. 亚马逊首席技术官 Werner Vogels 在周二的一篇博客文章中表示,亚马逊网络服务公司(AWS)刚刚选择 MXNet 作为其最主要的深度学习框架. <财富>今年 9 月的一篇深度长文回溯了深度学习推动的人工智能在整个计算生态系统引发的革命,如文章所述,深度学习是 AI 的一个子集,包含神经网络的使用.神经网络在算法(而非人类程序员)的帮助下通过处理大量数据来学习并解决问题. Vogels 表示,A

TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

Google 近日发布了 TensorFlow 1.0 候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自 TensorFlow 于 2015 年底正式开源,距今已有一年多,这期间 TensorFlow 不断给人以惊喜.在这一年多时间,TensorFlow 已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括 TensorFlow.Caffe.Keras.CNTK.Torch7.MX

TensorFlow和Caffe、CNTK、MXNet等其他7种深度学习框架的对比

主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow.Caffe8.Keras9.CNTK10.Torch711.MXNet12.Leaf13.Theano14.DeepLearning415.Lasagne16.Neon17,等等.然而TensorFlow却杀出重围,在关注度和用户数上都占据绝对优势,大有一统江湖之势.表2-1所示为各个开源框架在GitHub上的数据统计(数据统计于2017年1月3日),可以看到TensorFlow在st

Intel开源了基于Apache Spark的分布式深度学习框架BigDL

Intel开源了基于Apache Spark的分布式深度学习框架BigDL.BigDL借助现有的Spark集群来运行深度学习计算,并简化存储在Hadoop中的大数据集的数据加载. 在Xeon服务器上运行的测试结果表明,BigDL比其他开源框架Caffe.Torch和TensorFlow有显著的性能提升.BigDL速度可与主流GPU匹敌,而且能够扩展到数十个Xeon服务器. BigDL库支持Spark 1.5.1.6和2.0版本,并容许将深度学习嵌入在现有的Spark程序中.BigDL库中有把Sp

缺乏支持!Caffe深度学习框架未来堪忧

文章讲的是缺乏支持!Caffe深度学习框架未来堪忧,Caffe是由贾扬清在伯克利上学期间开发的,该项目已经开放源码,目前已获得社区贡献以及伯克利视觉和学习中心(BVLC)赞助.广泛来说,BVLC现在是伯克利人工智能研究(BAIR)实验室的一部分.同样,Caffe也已经超出了视觉范围,包括非视觉深度学习部分,虽然已发布的Caffe模型绝大多数仍然与图像和视频相关. Caffe是一个由表达式,速度和模块化组成的深度学习框架.其优势在于Caffe的模型和优化是通过没有硬编码的配置来定义的,以及在GPU

横向对比七大深度学习框架

文章讲的是横向对比七大深度学习框架,在深度学习项目开始前,选择一个合适的框架是非常重要的事情.最近,来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)为我们带来了深度学习 7 种流行框架的深度横向对比,希望本文能对你带来帮助. 在 SVDS,我们的研发团队一直在研究不同的深度学习技术;从识别图像到语音,我们也在各类框架下实现了不少应用.在这个过程中,我们意识到需要一个简明的方式来获取数据.创建模型.

【深度学习框架大PK】褚晓文教授:五大深度学习框架三类神经网络全面测评(23PPT)

香港浸会大学褚晓文教授团队在2016年推出深度学习工具评测的研究报告,并在2017年年初发布更新,引起广泛关注.见新智元报道< 基准评测 TensorFlow.Caffe.CNTK.MXNet.Torch 在三类流行深度神经网络上的表现(论文)>,2017年初版本的评测的主要发现可概括如下: 总体上,多核CPU的性能并无很好的可扩展性.在很多实验结果中,使用16核CPU的性能仅比使用4核或8核稍好.TensorFlow在CPU环境有相对较好的可扩展性. 仅用一块GPU卡的话,FCN上Caffe

TensorFlow与主流深度学习框架对比

引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架. TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度学