北京大学2015年数学分析考研试题

 

 

1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$

 

 

2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.

 

 

3. 函数 $$\bex f(x,y)=\sedd{\ba{ll} \sex{1-\cos \dfrac{x^2}{y}}\sqrt{x^2+y^2},&y\neq 0;\\ 0,&y=0. \ea} \eex$$ $f(x,y)$ 在 $(0,0)$ 处可微么? 证明你的结论.

 

 

4. 计算 $$\bex \int_L e^x[(1-\cos y)\rd x-(y-\sin y)\rd y], \eex$$ 其中 $L$ 去曲线 $y=\sin x$ 从 $(0,0)$ 到 $(\pi,0)$.

 

 

5. 证明函数项级数 $$\bex \sum_{n=0}^\infty \dfrac{\cos nx}{n^2+1} \eex$$ 在 $(0,2\pi)$ 上一致收敛, 并且在 $(0,2\pi)$ 上有连续导数.

 

 

6. 设 $$\bex x_0=1,\quad x_{n+1}=\dfrac{3+2x_n}{3+x_n},\quad (n\geq 0). \eex$$ 证明数列 $\sed{x_n}$ 收敛并求其极限.

 

 

7. 设函数 $f\in C^2(\bbR^2)$, 且对任意 $(x,y)\in\bbR^2$, $$\bex \dfrac{\p^2f}{\p x^2}(x,y)+\dfrac{\p^2f}{\p y^2}(x,y)>0. \eex$$ 证明: $f$ 没有极大值点.

 

 

8. 设 $f$ 在 $[a,b]$ 上连续, 在 $(a,b)$ 内可导, 且 $f(b)>f(a)$, $\dps{c=\dfrac{f(b)-f(a)}{b-a}}$. 证明 $f$ 必具备下述两条性质中的一个:

(1). 任意 $x\in [a,b]$, 有 $f(x)-f(a)=c(x-a)$.

(2). 存在 $\xi\in (a,b)$ 使得 $f'(\xi)>c$.

 

 

9. 设 $F:\bbR^3\to \bbR^2$ 是 $C^1$ 映射, $x_0\in\bbR^3$, $y_0\in\bbR^2$, $F(x_0)=y_0$, 且 $F$ 在 $x_0$ 处的 Jacobi 矩阵 $D F(x_0)$ 的秩为 $2$. 证明: 存在 $\ve>0$, 以及 $C^1$ 映射 $\gamma(t):\ (-\ve,\ve)\to\bbR^3$, 使得 $\gamma'(0)$ 是非零向量, 且 $F(\gamma(0))=y_0$.

 

 

10. 设开集 $U\subset\bbR^n$, $f:U\to \bbR^n$ 是同胚映射, 且 $f$ 在 $U$ 上一致连续. 证明: $U=\bbR^n$.

 

参考解答见家里蹲大学数学杂志.

 

时间: 2024-08-17 01:57:44

北京大学2015年数学分析考研试题的相关文章

北京大学2017年数学分析考研试题

2017年北京大学硕士研究生数学分析真题 1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.$$ 2.(10分) 证明:$\sum_{n=1}^{\infty }\frac{1}{1+nx^2}\sin \frac{x}{n^\alpha }$在任何有限区间上一致收敛的充要条件是:$\alpha > \frac{1}{2}$. 3.(10分) 设$\sum_

北京大学2016年数学分析考研试题

本文来自TangSong.   1.($15'$) 用开覆盖定理证明闭区间上连续函数必一致连续. 2.$(15')$ $f(x)$ 是 $[a,b]$ 上的实函数.叙述关于Riemann和 \[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\] 的Cauchy准则 (不用证明) 并用你叙述的Cauchy准则证明闭区间上的单调函数可积. 3.$(15')$ $(a,b)$ 上的连续函数 $f(x)$ 有反函数. 证明反函数连续. 4.$(15')$ $f(x_1,x_2,x_3)

浙江大学2015年数学分析考研试题

1. 求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$   2. 求 $$\bex \lim_{x\to 0^+}\sez{\frac{1}{x^5}\int_0^x e^{-t^2}\rd t +\frac{1}{3}\frac{1}{x^2}-\frac{1}{x^4}}. \eex$$     3. 设 $$\bex I(r)=\oint_L \dfrac{y

武汉大学2015年数学分析考研试题

一. 计算题 ($40'$)   1. $\dps{\lim_{x\to 1}\frac{(x^n-1)(x^{n-1}-1)\cdots(x^{n-k+1}-1)}{(x^1-1)(x^2-1)\cdots (x^k-1)}}$.   2. $\dps{\lim_{x\to0}\frac{ \sqrt[n]{\cos \al x}-\sqrt[m]{\cos\beta x}}{\sin^2x}}$, 其中 $m,n$ 为正整数.     3. $\dps{\vlm{n}\sum_{k=1}^n

华中师范大学2011年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一. (1)证明:由于${{x}_{1}}\in (0,\frac{\pi }{2}),{{x}_{n+1}}=\sin {{x}_{n}}$,则${{x}_{n}}\in (0,\frac{\pi }{2}),n=1,2,\cdots $ 且${{x}_{n+1}}=\sin {{x}_{n}}\le {{x}_{n}}$ 于是$\{{{x}_{n}}\}$单调递减且${{x}_{n}}\in (0,\frac{\pi }{2})$ 由单调有界原理可知:$\

武汉大学2013年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一: 1:解:\[\because \underset{x\to 0}{\mathop{\lim }}\,\ln (1+x)=x\] \[\therefore \underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{\ln (1+x)}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{x}=\underset{x\to 0}{\mat

华东师范大学2017年数学分析考研试题

转自(赵江彦): http://www.math.org.cn/forum.php?mod=viewthread&tid=37148

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$    解答: 用 $-f$ 代替 $f$, 而不妨设 $$\bex \exists\ c\in (0,1),\st 0<f(c)=\max_{x\in [0,1]}|f(x)|