Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14601 Accepted Submission(s): 6667
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
Recommend
JGShining
题解:典型DFS 做法已经标记在 程序上了
#include <iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; int n,ans[22]; bool isp[45]; bool vis[45]; void dfs(int p,int x) //p为当前第几个可行数 x为可行的数 { ans[p]=x; vis[x]=1; if(p==n) //当P等于n证明最后一个数与倒数第二个数相加为素数 只需判断是否跟1相加为素数 { if(isp[ans[p]+1]) //判断最后一个数是否与1相加为素数 如果是那么该环成立 输出结果 { for(int i=1; i<=n; i++) { printf("%d",ans[i]); if(i<n) printf(" "); else printf("\n"); } return ; } } for(int i=1; i<=n; i++) { if(!vis[i]&&isp[ans[p]+i]) { dfs(p+1,i);//符合值进入下一层搜索 vis[i]=0; //不符合 回溯上一层 } } return ; } int main() { int s=1; memset(isp,1,sizeof(isp)); isp[1]=0; isp[0]=0; for(int i=2; i<=int(sqrt(40)); i++)//打出素数表 { if(isp[i]) { for(int j=2*i; j<=40; j+=i) isp[j]=0; } } while(scanf("%d",&n)!=EOF) { memset(vis,0,sizeof(vis)); cout<<"Case "<<s<<':'<<endl; dfs(1,1); s++; cout<<endl; } return 0; }