内部排序算法:快速排序

基本思想

设当前待排序的数组无序区为R[low..high],利用分治法可将快速排序的基本思想描述为:

  • 分解:

在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无需参加后续的排序。
注意:划分的关键是要求出基准记录所在的位置pivotpos,划分的结果可以简单地表示为(注意pivot=R[pivotpos]):
R[low..pivotpos-1].keys ≤ R[pivotpos].key ≤ R[pivotpos+1..high].keys
其中low≤pivotpos≤high。

  • 求解:

通过递归调用快速排序对左、右子区间R[low..pivotpos-1]和R[pivotpos+1..high] 快速排序。

  • 组合:

因为当“求解”步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言, “组合”步骤不需要做什么,可看作是空操作。

算法实现

快速排序算法,Java实现,代码如下所示:

01 public abstract class Sorter {
02 public abstract void sort(int[] array);
03 }
04
05 public class QuickSorter extends Sorter {
06
07 @Override
08 public void sort(int[] array) {
09 quickSort(array, 0, array.length - 1);
10 }
11
12 /**
13 * 通过划分,基于分治思想,递归执行子任务排序最后合并
14 * @param low 数组首位置索引
15 * @param high 数组末位置索引
16 */
17 private void quickSort(int[] array, int low, int high) {
18 int pivotPos; // 划分基准元素索引
19 if (low < high) {
20 pivotPos = partition(array, low, high);
21 quickSort(array, low, pivotPos - 1); // 左划分递归快速排序
22 quickSort(array, pivotPos + 1, high); // 右划分递归快速排序
23 }
24 }
25
26 /**
27 * 简单划分方法
28 * @param i
29 * @param j
30 * @return
31 */
32 private int partition(int[] array, int i, int j) {
33 Integer pivot = array[i]; // 初始基准元素,如果quickSort方法第一次调用,pivot初始为数组第一个元素
34 while (i < j) { // 两个指针从两边向中间靠拢,不能相交
35 // 右侧指针向左移动
36 while (j > i && array[j] >= pivot) {
37 j--;
38 }
39 if (i < j) { // 如果在没有使指针i和j相交的情况下找到了array[j] >= 基准元素pivot
40 array[i] = array[j]; // 基准元素放到了j指针处
41 i++; // 左侧i指针需要向右移动一个位置
42 }
43 // 左侧指针向右移动
44 while (i < j && array[i] <= pivot) {
45 i++;
46 }
47 if (i < j) { // 如果在没有使指针i和j相交的情况下找到了array[i] <= 基准元素pivot
48 array[j] = array[i]; // 基准元素放到了i指针处
49 j--; // 右侧j指针需要向左移动一个位置
50 }
51 }
52 array[i] = pivot; // 将基准元素放到正确的排序位置上
53 return i;
54 }
55 }

快速排序算法,Python实现,代码如下所示:

01 class Sorter:
02 '''
03 Abstract sorter class, which provides shared methods being used by
04 subclasses.
05 '''
06 __metaclass__ = ABCMeta
07
08 @abstractmethod
09 def sort(self, array):
10 pass
11
12 class QuickSorter(Sorter):
13 '''
14 Quick sorter
15 '''
16 def sort(self, array):
17 length = len(array)
18 self.__quick_sort(array, 0, length - 1)
19
20 def __quick_sort(self, array, low, high):
21 if low<high:
22 pivotPos = self.__partition(array, low, high)
23 self.__quick_sort(array, low, pivotPos - 1)
24 self.__quick_sort(array, pivotPos + 1, high)
25
26 def __partition(self, array, i, j):
27 pivot = array[i]
28 while i<j:
29 # right side pointer moves to left
30 while j>i and array[j]>=pivot:
31 j = j - 1
32 if i<j:
33 array[i] = array[j]
34 i = i + 1
35 # left side pointer moves to right
36 while i<j and array[i]<=pivot:
37 i = i + 1
38 if i<j:
39 array[j] = array[i]
40 j = j - 1
41 # put the pivot element to the right position
42 array[i] = pivot
43 return i

排序过程

采用分治的思想对待排序数组进行划分。分治法的基本思想是:
将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
快速排序,主要是求得一个合理的划分,从而基于此划分来分治排序。使用简单划分方法的思想是:
第一步:
设置两个指针i和j,它们的初值分别为区间的下界和上界,即i=low,i=high; 选取无序区的第一个记录R[i](即R[low])作为基准记录,并将它保存在变量pivot中;
第二步:

  1. 首先,令j自high起向左扫描,直到找到第1个关键字小于pivot.key的记录R[j],将R[j]移至i所指的位置上,这相当于R[j]和基准R[i](即pivot)进行了交换,使关键字小于基准关键字pivot.key的记录移到了基准的左边,交换后R[j]中相当于是pivot;
  2. 然后,令i指针自i+1 位置开始向右扫描,直至找到第1个关键字大于pivot.key的记录R[i],将R[i]移到i所指的 位置上,这相当于交换了R[i]和基准R[j],使关键字大于基准关键字的记录移到了基准的右边, 交换后R[i]中又相当于存放了pivot;
  3. 接着,令指针j自位置j-1开始向左扫描,如此交替改变扫 描方向,从两端各自往中间靠拢,直至i=j时,i便是基准pivot最终的位置,将pivot放在 此位置上就完成了一次划分。

快速排序示例过程,如下所示:
假设待排序数组为array = {94,12,34,76,26,9,0,37,55,76,37,5,68,83,90,37,12,65,76,49},数组大小为20。
首先,根据数组下界和上界,求得一个划分,划分过程如下:

  • 第一次划分:

初始化:i = 0,j=19,以第一个元素array[0] = 94为基准pivot = array[0] = 94。
首先指针j向前移动:
array[19] = 49<pivot = array[0] = 94,i = 0<j = 19,继续移动j指针;
array[18] = 76<pivot = array[0] = 94,i = 0<j = 18,继续移动j指针;
……
array[1] = 12<pivot = array[0] = 94,i = 0<j = 1,继续移动j指针;
i = 0pivotPos-1 = -1排序停止;右侧部分继续递归执行快速排序。

  • 第二次划分:

对于{12,34,76,26,9,0,37,55,76,37,5,68,83,90,37,12,65,76,49}:
初始化:i = 1,j=19,以第二个元素(除了第一次划分的基准元素)array[1] = 12为基准pivot = array[1] = 12。
首先指针j向前移动:
array[19] = 49>=pivot = array[1] = 12成立,并且j = 19>i = 1,j指针继续移动;
array[18] = 76>=pivot = array[1] = 12成立,并且j = 18>i = 1,j指针继续移动;
array[17] = 65>=pivot = array[1] = 12成立,并且j = 17>i = 1,j指针继续移动;
array[16] = 12>=pivot = array[1] = 12成立,并且j = 16>i = 1,j指针继续移动;
array[15] = 37>=pivot = array[1] = 12成立,并且j = 15>i = 1,j指针继续移动;
array[14] = 90>=pivot = array[1] = 12成立,并且j = 14>i = 1,j指针继续移动;
array[13] = 83>=pivot = array[1] = 12成立,并且j = 13>i = 1,j指针继续移动;
array[12] = 68>=pivot = array[1] = 12成立,并且j = 12>i = 1,j指针继续移动;
array[11] = 5>=pivot = array[1] = 12不成立,j指针停止移动:
此时i = 1<j = 11,将j指针处的元素移动到i指针处:array[1] = 5(基准元素的拷贝为pivot = 12),同时i指针向后移动一次:i++,即i = 2;
子数组变为(下面左边的12表示基准元素,实际j指针移动后并没有移动基准元素,而是pivot变量持有它的拷贝,12 处仍然是5):
{5,34,76,26,9,0,37,55,76,37,12,68,83,90,37,12,65,76,49}。
指针i向后移动:
array[2] = 34<=pivot = 12不成立,i指针停止移动:
此时i = 2<j = 11,将i指针处的元素移动到j指针处:array[11] = 34(基准元素的拷贝为pivot = 12),同时j指针向前移动一次:j–,即j = 10;
子数组变为:
{5,12,76,26,9,0,37,55,76,37,34,68,83,90,37,12,65,76,49}。
判断i与j:i = 2= pivot = 12成立,并且j = 10>i = 2,j指针继续移动;
array[9] = 76>= pivot = 12成立,并且j = 9>i = 2,j指针继续移动;
array[8] = 55>= pivot = 12成立,并且j = 8>i = 2,j指针继续移动;
array[7] = 37>= pivot = 12成立,并且j = 7>i = 2,j指针继续移动;
array[6] = 0>= pivot = 12不成立,j指针停止移动:
此时j = 6>i = 2,将j指针处的元素array[6] = 0移动到i指针处:array[2] = array[6] = 0(基准元素的拷贝为pivot = 12),同时i指针向后移动一次:i++,即i = 3;
子数组变为(下面左边的12表示基准元素,实际j指针移动后并没有移动基准元素,而是pivot变量持有它的拷贝,12处仍然是0):
{5,0,76,26,9,12,37,55,76,37,34,68,83,90,37,12,65,76,49}。
指针i第2次向后移动:
array[3] = 76i = 3,将i指针处的元素array[3] = 76移动到j指针处:array[6] = array[3] = 0(基准元素的拷贝为pivot = 12),同时j指针向前移动一次:j–,即j = 5;
子数组变为:
{5,0,12,26,9,76,37,55,76,37,34,68,83,90,37,12,65,76,49}。
判断i与j:i = 3=pivot = 12不成立,j指针停止移动:
此时j = 5>i = 3,将j指针处的元素array[5] = 9移动到i指针处:array[3] = array[5] = 9(基准元素的拷贝为pivot = 12),同时i指针向后移动一次:i++,即i = 4;
子数组变为(下面左边的12表示基准元素,实际j指针移动后并没有移动基准元素,而是pivot变量持有它的拷贝,12处仍然是9):
{5,0,9,26,12,76,37,55,76,37,34,68,83,90,37,12,65,76,49}。
指针i第3次向后移动:
array[4] = 26i = 4,将i指针处的元素array[4] = 26移动到j指针处:array[5] = array[4] = 26(基准元素的拷贝为pivot = 12),同时j指针向前移动一次:j–,即j = 4;
子数组变为:
{5,0,9,12,26,76,37,55,76,37,34,68,83,90,37,12,65,76,49}。
判断i与j:i = 4<j = 4不成立,条件不满足:
将基准元素放到i指针处,array[4] = pivot = 12;并返回基准元素的索引i = 4。
划分结束。
根据得到的基准元素的索引,递归快速排序。

算法分析

  • 时间复杂度

最好情况
在最好情况下,每次划分所取的基准都是当前无序区的”中值”记录,划分的结果是基准的左、右两个无序子区间的长度大致相等,总的关键字比较次数:0(nlgn)。
最坏情况
最坏情况是每次划分选取的基准都是当前无序区中关键字最小(或最大)的记录,划分的结果是基准左边的子区间为空(或右边的子区间为空),而划分所得的另一个非空的子区间中记录数目,仅仅比划分前的无序区中记录个数减少一个。
因此,快速排序必须做n-1次划分,第i次划分开始时区间长度为n-i+1,所需的比较次数为n-i(1≤i≤n-1),故总的比较次数达到最大值:
n(n-1)/2 = O(n^2)
如果按上面给出的划分算法,每次取当前无序区的第1个记录为基准,那么当文件的记录已按递增序(或递减序)排列时,每次划分所取的基准就是当前无序区中关键字最小(或最大)的记录,则快速排序所需的比较次数反而最多。

  • 空间复杂度

快速排序在系统内部需要一个栈来实现递归。若每次划分较为均匀,则其递归树的高度为O(logn),故递归后需栈空间为O(logn)。最坏情况下,递归树的高度为O(n),所需的栈空间为O(n)。

  • 排序稳定性

快速排序是不稳定的。

时间: 2024-07-31 11:42:44

内部排序算法:快速排序的相关文章

常用内部排序算法之二:快速排序

前言 快速排序可以说是内部排序算法中的高手,之所以称为快速排序,是因为快速排序算法从整体性能上讲是排序冠军.快速排序算法的思想是:通过一趟快速排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的记录的关键字小,则可分别对这两部分记录继续进行排序,达到整个记录有序.实现快速排序算法的核心是partition函数,这个函数的主要目的先选取当中的一个关键字(称为枢轴),然后尽可能将他放在一个位置,使得它左边的值都比它小,右边的值比它大. 快速排序算法实现 package com.

排序算法——快速排序

今天介绍快速排序,这也是在实际中最常用的一种排序算法,速度快,效率高.就像名字一样,快速排序是最优秀的一种排序算法. 思想 快速排序采用的思想是分治思想. 快速排序是找出一个元素(理论上可以随便找一个)作为基准(pivot),然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置.递归快速排序,将其他n-1个元素也调整到排序后的正确位置.最后每个元素都是在排序后的正 确位置,排序完成.所以快速排序算法的核心算法是分区操

基于C++实现的各种内部排序算法汇总_C 语言

提起排序算法相信大家都不陌生,或许很多人已经把它们记得滚瓜烂熟,甚至随时可以写出来.是的,这些都是最基本的算法.这里就把各种内部排序算法总结归纳了一下,包括插入排序(直接插入排序,折半插入排序,希尔排序).交换排序(冒泡排序,快速排序).选择排序(简单选择排序,堆排序).2-路归并排序.(另:至于堆排序算法,前面已经有一篇文章针对堆排序的算法实现做了详细的描述) C++实现代码如下: /*******************************************************

常用内部排序算法之五:希尔排序

前言 在前面介绍常用内部排序算法的文章中,我们知道在简单排序算法中,直接插入排序算法的时间复杂度是要优于冒泡排序和简单选择排序的.而这里要讲的希尔排序则是优于直接插入排序的.而且希尔排序打破了原来简单排序中时间复杂度不能超过O(n2)的神话.这也是希尔排序伟大的地方,而且希尔排序不同于之前三种简单排序,希尔排序是以一个科学家的名字进行命名的. 希尔排序的原理 由于希尔排序是在直接插入排序的基础上进行改进的,所以为了更好理解希尔排序,需要再次将直接插入排序请出来.我们知道直接插入排序的基本思想是将

内部排序算法的总结

内部排序总结 这篇博文我们简要地总结下各种内部排序方法. 这10种排序算法中,前面7种属于建立在"比较"基础上的排序算法,通过决策树已经证明,任何基于比较进行的排序算法的时 间复杂度不可能再优于O(n*logn).后面3种不是建立在比较的基础上的,因此,可以达到线性运行时间. 下面我们给出各种排序方法的时空复杂度的表格(属于自己总结,有不对的地方,希望大家指正或补充). 返回栏目页:http://www.bianceng.cnhttp://www.bianceng.cn/Program

内部排序算法:希尔排序

基本思想 先取一个小于n的整数d1作为第一个增量,把待排序的全部记录分成dx个组.所有距离为d1的倍数的记录放在同一个组中. 先在各组内进行直接插人排序. 然后,取第二个增量d2<d1重复上述的分组和排序. 直至所取的增量dt=1(dt<dt-x<-<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 算法实现 希尔排序算法,Java实现,代码如下所示: 01 public abstract class Sorter { 02 public abstract void

Java排序算法 快速排序

排序是计算机内经常进行的一种操作,其目的是将一组"无序"的记录序列调整为"有序"的记录序列.下面让我们一起来看快速排序. AD: 快速排序(Quicksort)是对冒泡排序的一种改进.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列.快速排序不稳定,O(log(n))的额外空间,时间复杂度为O(nlog

内部排序算法:基数排序

基本思想 基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较.由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数. 基数排序可以采用两种方式: LSD(Least Significant Digital):从待排序元素的最右边开始计算(如果是数字类型,即从最低位个位开始). MSD(Most Significant Digital):从待排序元素的最左边开始计算(如果是数字类型,即从最高位开始). 我们以L

常用内部排序算法之四:简单选择排序、直接插入排序和冒泡排序

前言 之所以把这三类算法放在一块,是因为除此之外的算法都是在这三类算法的基础上进行优化的.简单选择排序的思想是每一趟n−i+1(i=1,2,...,n−1)个记录中选择最小的记录作为有序序列的第i个记录.直接插入排序的思想是将一个记录插入到已经排好序的有序序列中,从而得到一个新的.记录数增加1的有序表.冒泡排序的算法思想是不断在交换,通过交换完成最终的排序,每一趟的交换就会把最大的记录取出来,下一趟则会把第二大的记录取出来,这样每进行一趟交换就把一个记录取出来的过程称为冒泡. 简单选择排序算法