对于坐拥海量数据的金融企业来说,大数据治理意味着什么?

玉不琢不成器,一块没有经过雕琢的美玉,需要经过琢磨打造之后,才能显现出它的真正价值。对于金融企业来说,数据不只包括自身业务系统中为支撑正常业务流转的数据,还包括从外界交易流中收获的大量第三方数据,这些数据就像是未经雕琢的美玉,需要“大数据治理”这一“雕琢”的过程来对数据进行价值发现。

对于坐拥海量数据的金融企业来说,大数据治理意味着什么?

责任编辑:editor004 |  2016-10-10 11:09:15 本文摘自:C114中国通信网

玉不琢不成器,一块没有经过雕琢的美玉,需要经过琢磨打造之后,才能显现出它的真正价值。对于金融企业来说,数据不只包括自身业务系统中为支撑正常业务流转的数据,还包括从外界交易流中收获的大量第三方数据,这些数据就像是未经雕琢的美玉,需要“大数据治理”这一“雕琢”的过程来对数据进行价值发现。

  图:经过雕琢之后的美玉

一、为什么大数据治理在金融行业这么火?

早在几年前甚至更早,国内各大金融机构就开始尝试大数据治理相关建设,纷纷将大数据治理作为一项基础性工作,其中比较早的有国家开发银行等,北京银行、中信银行、华夏银行等也随后开始了大数据治理项目。

多位金融专家曾指出,大数据治理能获得国内金融企业广泛重视的原因主要有以下几点:

1、日趋严格的监管要求金融机构开展大数据治理

外部监管和审计对大数据治理的刚性需求是金融行业普遍重视大数据治理的一个重要原因。

金融业作为国家命脉, 受巴塞尔协议III等协议影响,受人民银行、银监会、外管局等部门的多口监管。2006 年,银监会制定了我国商业银行分步实施新资本协议的指导意见,要求金融企业对风险实现资本计量,并以此为基础进一步提出了“腕骨”监管原则;随后,《商业银行信息科技风险管理指引》对金融企业数据治理提出了明确的要求;再有,财政部、国资委、证监会等部门也纷纷对金融企业提出了一些与风险管理、内部控制相关的要求,数据治理也是其中的重点。

就目前趋势来看,未来几年,监管部门很可能进一步完善监管细则,对金融企业数据的完整性、准确性、一致性、有效性和及时性提出更高的要求。

2、金融机构的风险管理离不开大数据治理

金融机构的信贷管理部门需要密切关注贷款分类及客户信息的变动,通过大数据治理来保障资产分类的准确性,这对于金融机构减少非预期损失十分关键。

对于金融机构来说,第三方数据质量的保证尤为重要,大数据治理可帮助金融机构提高第三方数据的质量,方便金融机构对非结构化信息进行梳理,精准地计算出客户的信用情况和违约概率,构建出新的信用评价模型,打造智能化引擎支持的“直通式”全流程在线融资服务模式,最大化提高融资效率,降低信贷风险。

3、金融机构的业务运营和创新需要大数据治理

大数据治理是金融机构业务运营的需要。数据是金融的生命线,金融企业在日常运营中会积累大量数据,这些数据除了支持前台业务流程运转之外,越来越多地被用于企业的决策支持,不同业务系统之间的数据一致性对于保障各项业务的有效开展非常重要,突发事件发生时,数据的完整性和可用性在很大程度上决定了关键业务系统是否能及时恢复。而数据一致性、完整性、可用性的提高均属于大数据治理的范畴。

大数据治理是金融机构业务创新的需要。金融全球化和金融脱媒的加速使金融机构之间的竞争越来越激烈,传统的经营方式面临极大的挑战,“以客户为中心”的经营理念需要金融机构全面收集信息,在传统存贷汇业务的基础上提出业务模式创新。这些创新需要利用工具对业务数据进行挖掘分析,大数据治理是分析结果准确的基础。

二、金融行业该如何开展大数据治理相关工作?

金融业是个比较特殊的行业,与其他行业相比,其大数据治理相关工作开展得比较早,普元在金融领域做大数据治理的成功案例比较多,根据国内各大金融机构的大数据治理的实践,总结出了金融机构开展大数据治理相关工作的一些方法:

1、自上而下,推动大数据治理的相关建设

对金融企业来说,大数据治理的提出和落地的关键离不开金融机构高层领导自上而下的推动。目前,领导意志和高层推动几乎是所有金融大数据治理项目成败的关键。在项目初期,各个部门之间的协调需要强有力的高层来自上而下进行推动,当后期大数据治理走上正轨,各部门利益和治理效果绑定之后,也需要高层进行把关,将这些KPI落实下去。

2、摸清家底,全面了解企业大数据资产全貌

对于金融机构来说,数据往往分布在不同的部门,这些数据的用途、结构、价值和质量水平各有差异,通常在金融机构各个系统中呈现碎片化分布。因此,金融机构在做大数据治理之前,应该先“摸清家底”,通过元数据管理工具,自动抽取企业内部所有元数据,全面梳理企业内部整个大数据资产,根据展现出来的企业数据地图,了解企业大数据资产全貌,为后面的大数据治理工作打下基础。

3、标准先行,支撑大数据治理的有效开展

目前国内金融机构纷纷加强了行业层面的数据标准工作。通常是依据数据标准管理相关办法,落实数据标准管理相关人员的职责,并紧扣数据标准管理的流程规范,持续对已有的数据标准管理框架进行优化。通过这种方法,推动与其他金融机构之间、与监管机构之间、与外部机构之间的信息交换和共享,支撑大数据治理的有效开展。

4、狠抓质量,确保大数据治理的实际落地

可以说,大数据质量的提升是金融机构开展大数据治理相关工作的最终目的。目前,有部分金融机构已经将大数据的管理和应用纳入全行统一的数据质量规划范畴,参照已正式发布的数据标准,整理新建项目的业务范围和系统规划,在数据质量规划的要求下酌情对已经建设完成的系统进行适应性改造。

三、金融行业大数据治理应该抓住哪些关键点?

1、合理选择元数据管理工具——用自动采集代替人工录入,保障数据标准落地

与其他行业相比,金融业务非常复杂,无论是数据项还是数据量都庞杂无比,单靠人工对元数据进行梳理远远满足不了要求,必须选择一款功能强大的元数据管理工具来实现自动化的元数据采集,通过元数据管理,保障数据标准的落地。

  图:普元元数据管理工具的自动化采集能力

2、从需求开始控制数据质量——将质量控制前移,从源头解决数据质量问题

随着近年来金融监管各方对数据质量要求的日益提高,建立一个完善的数据质量管理体系的迫切性越来越显著。金融机构可以将数据质量管理嵌入系统开发周期的全过程,确保在系统开发阶段就做到数据质量问题的预防。

  图:从需求开始控制数据质量

现在金融机构在控制数据质量的时候容易出现一个问题,就是只对已经产生的数据做检查,再将错误数据剔除,这种方法治标不治本,不能从源头上解决数据质量问题。要想真正解决数据质量问题,应该从需求开始,将数据质量服务集成到需求分析人员、模型设计人员与开发人员的工作环境中,在数据的全生命周期中控制数据质量。

3、将数据治理共享成为服务——“以应促治”,推动数据治理工作的开展

为更好地推动数据治理相关工作,金融企业应该提供多种多样的大数据治理服务,把大数据治理工作融入到企业的各个系统中,帮助业务部门更简单,更方便地应用数据标准,让大家在日常的工作环境中就能控制数据质量,推动数据治理工作的开展,在全行形成数据治理的合力。

  图:数据治理服务化

比如,通过业务元数据服务,可以让业务人员在不通过技术人员的帮助下,就能够查询到一些业务术语和业务术语之间的关系,自助进行报表开发,让报表开发变得更高效;通过数据标准服务,可以让技术人员在为系统进行建模时,就能够查询到各种数据标准,让数据标准在建模的时候就能够得到落实等。

四、普元在金融行业的大数据治理实践

普元自2008年就开始涉足大数据治理领域,7年来一直走在整个业界的前列。普元大数据治理平台Primeton Data Governance,以元数据为核心,融合了大数据标准、大数据质量、主数据、大数据交换集成、大数据资产化、大数据共享发布等多种成熟的产品和方案,旨在为企业提供从大数据治理咨询到工具支撑再到落地实施的一体化解决方案。

  图:普元大数据治理整体架构

目前普元大数据治理平台已经成功应用到金融、电信、制造、政府、电力等各大行业,特别是在金融行业拥有大量的大数据治理成功实施案例,其中包括国家开发银行、中信银行、北京银行、上海银行、华夏银行等国内重点金融企业。

本文转自d1net(转载)

时间: 2024-10-28 06:44:18

对于坐拥海量数据的金融企业来说,大数据治理意味着什么?的相关文章

大数据治理:地方政府准备好了吗?

 一.引言 大数据时代的来临,为政府治理创新和公共服务绩效改善创造了巨大契机,但也提出了不容忽视的严峻挑战.2015年8月,国务院印发<促进大数据发展行动纲要>(国发[2015]50号,以下简称<行动纲要>),将大数据发展和应用提高到国家战略层面.这项动议几乎要把全社会的所有力量都动员起来,但是对地方政府的角色和定位却并没有明确和清晰的界定.<行动纲要>在两处专门提及地方政府,一处是"结合信息惠民工程实施和智慧城市建设,推动中央部门与地方政府条块结合.联合试点

数字化转型中的大数据治理架构

大家好,我今天分享的主题是大数据治理.我们如何使用好大数据资产,才能够更好地发挥其中的价值? 主要大纲: 一.数字化时代大数据向服务化发展 二.数字化时代的大数据治理架构 三.大数据治理的12个技术原则 四.总结 一.数字化时代大数据向服务化发展 本文讲的是数字化转型中的大数据治理架构,数字化时代,我们的数据来源比以前更广了.第一,之前传统企业政府的IT系统主要是面向内部使用,产生了一些信息,现在已经面向外部使用了:第二,更多行为信息.社交信息都会变成企业的数据:第三,我们有很多非结构化的数据,

浅谈自服务的大数据治理在企业数字化转型中的妙用

一.用户与大数据之间的鸿沟让数字化转型困难重重 本文讲的是浅谈自服务的大数据治理在企业数字化转型中的妙用,目前虽然不少企业已经广泛建设大数据平台,但却难以直接使用平台中的大数据,企业人员与大数据之间存在着一道难以逾越的鸿沟. 这道鸿沟的出现导致企业在使用大数据的过程中出现数据不可知.需求难实现.数据难共享等一系列问题: 1.数据不可知,数据价值无处可寻 企业环境中到底有哪些数据,这些数据在哪里,慢慢变成了大数据平台的"迷",用户迷失在动辄几十PB的数据中.对于企业管理者来说,无法从管理

大数据治理需要具备哪些能力和关键技术?

在企业数据建设过程中,大数据治理受到越来越多的重视.从企业数据资产管理和提升数据质量,到自服务和智能化的数据应用,大数据治理的内容在不断发展和完善,其落地实施的过程中会遇到各种各样的难题和挑战.本篇文章通过分析大数据治理建设中的沟沟坎坎,总结出了大数据治理需要具备的能力和关键技术. 一.困难重重却充满光明的大数据治理发展之路 1. 传统数据治理一直无法逃脱的魔咒 大数据治理从建设内容和实施目标上可以划分成不同的阶段,每个阶段完成不同的任务,随着阶段的递进,建设内容逐步加深,不同的企业切入点和诉求

政府拥抱大数据 治理迎来新格局

文章讲的是政府拥抱大数据 治理迎来新格局,在全社会信息量爆炸式增长的背景下,政府部门该如何拥抱大数据?专家建议,一方面要加强与大数据分析企业.互联网公司的合作,获取更丰富的数据,另一方面要开放一些政府数据给企业,发挥企业的智力资源与技术实力,为政府提供决策支撑- 国办近日印发<关于运用大数据加强对市场主体服务和监管的若干意见>,提出充分运用大数据先进理念.技术和资源,加强对市场主体的服务和监管,推进简政放权和政府职能转变,提高政府治理能力. "这是适应时代需求的必然选择,是智慧城市建

大数据治理不容忽视

 本文介绍了IBM副总裁Ron Ben Natan博士对大数据治理的分析,着重阐释了大数据治理难题和IBM大数据治理的实践. 当畅销书<大数据时代>的作者维克托·迈尔-舍恩伯格在谈到大数据给信息时代带来的变革时,他认为相对于"小数据"来说,我们不再热衷于追求大数据的精准度.或者我们可以将其理解为大数据定义中的第三个V,即Value(价值).大数据的价值密度相对于传统交易数据会比较低,在大数据时代,我们不必去追求每一条数据都准确无误,数据的混杂以及相互作用让我们从之前的探寻因

金融行业大数据治理背后藏着什么样的答案?

ZDNET至顶网CIO与应用频道 11月04日 北京消息:金融行业是典型的数据驱动行业,自人民银行携手全国金融标准化技术委员会启动<银行业标准化体系框架>研究工作以来,人民银行先后下发了<金融业机构信息管理规定>.<贷款统计分类及编码标准(试行)>.<存款统计分类及编码标准(试行)>等多项标准,并牵头组建了有24家银行组成的金融统计标准化工作小组,加大数据标准化的工作力度."数据是重要资产"的观念已经在金融行业成为共识.那么,问题来了:

大数据治理:成熟度评估框架

Goals:目标 Business Outcomes:业务成果 Enablers:支持要素 Organizational Structures & Awareness:组织结构和认识 Stewardship:管理人员 Data RiskManagement:数据风险管理 policy:策略 Core Disciplines:核心准则 Data Quality Management:数据质量管理 Information Lifecycle Management:信息生命周期管理 Informati

强大的大数据治理计划是业务决策专业人员的福音

强大http://www.aliyun.com/zixun/aggregation/14294.html">的大数据治理计划可以消除查找和使用正确信息来制定业务决策的过程中的凭空猜测. 许多组织正致力于实现信息治理,以监督有关其数据.原材料.供应商和财务方面的关键数据.出于同样的原因,企业纷纷开始实现大数据计划,利用 Apache Hadoop 等开放源码技术,通过传感器.RFID.社交媒体.呼叫中心记录和其他来源提供的新型数据创造价值. 组织内的信息治理计划与大数据计划大多存在于孤岛之中