介绍
什么是分层数据?
类似于树形结构,除了根节点和叶子节点外,所有节点都有用一个父节点和多个子节点。
那么,在MySQL中如何处理分层数据呢?
原文中介绍了两种分层结构模型:邻接表模型和嵌套集合模型。
邻接表模型(The Adjacency List Model)
首先,建立测试表,导入测试数据,
CREATE TABLE category( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, parent INT DEFAULT NULL ); INSERT INTO category VALUES (1,'ELECTRONICS',NULL), (2,'TELEVISIONS',1), (3,'TUBE',2), (4,'LCD',2), (5,'PLASMA',2), (6,'PORTABLE ELECTRONICS',1), (7,'MP3 PLAYERS',6), (8,'FLASH',7), (9,'CD PLAYERS',6), (10,'2 WAY RADIOS',6); SELECT * FROM category ORDER BY category_id; +-------------+----------------------+--------+ | category_id | name | parent | +-------------+----------------------+--------+ | 1 | ELECTRONICS | NULL | | 2 | TELEVISIONS | 1 | | 3 | TUBE | 2 | | 4 | LCD | 2 | | 5 | PLASMA | 2 | | 6 | PORTABLE ELECTRONICS | 1 | | 7 | MP3 PLAYERS | 6 | | 8 | FLASH | 7 | | 9 | CD PLAYERS | 6 | | 10 | 2 WAY RADIOS | 6 | +-------------+----------------------+--------+ 10 rows in set (0.00 sec)
在邻接表中,所有的数据均拥有一个Parent字段,用来存储它的父节点。当前节点为根节点的话,它的父节点则为NULL。
那么在遍历的时候,可以使用递归来实现查询整棵树,从根节点开始,不断寻找子节点(父节点->子节点->父节点->子节点)。
检索分层路径
一般需要获取一个分层结构的路径问题,那么
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS'; +-------------+----------------------+--------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+--------------+-------+ | ELECTRONICS | TELEVISIONS | TUBE | NULL | | ELECTRONICS | TELEVISIONS | LCD | NULL | | ELECTRONICS | TELEVISIONS | PLASMA | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | | ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL | +-------------+----------------------+--------------+-------+ 6 rows in set (0.00 sec)
检索叶子节点
SELECT t1.name FROM category AS t1 LEFT JOIN category as t2 ON t1.category_id = t2.parent WHERE t2.category_id IS NULL; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+
检索指定路径
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH'; +-------------+----------------------+-------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+-------------+-------+ | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | +-------------+----------------------+-------------+-------+ 1 row in set (0.01 sec)
邻接表的缺点
在检索路径的过程中,除了本层外,每一层都会对应一个LEFT JOIN,那么如果层数不定怎么办?或者层数过多?
在删除中间层的节点时,需要同时删除该节点下的所有节点,否则会出现孤立节点。
嵌套集合模型Nested Set Model
原文中主要的目的是介绍嵌套集合模型,如下
通过集合的包含关系,嵌套结合模型可以表示分层结构,每一个分层可以用一个Set来表示(一个圈),父节点所在的圈包含所有子节点所在的圈。
为了用MySQL来表示集合关系,需要定义连个字段left和right(表示一个集合的范围)。
CREATE TABLE nested_category ( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, lft INT NOT NULL, rgt INT NOT NULL ); INSERT INTO nested_category VALUES (1,'ELECTRONICS',1,20), (2,'TELEVISIONS',2,9), (3,'TUBE',3,4), (4,'LCD',5,6), (5,'PLASMA',7,8), (6,'PORTABLE ELECTRONICS',10,19), (7,'MP3 PLAYERS',11,14), (8,'FLASH',12,13), (9,'CD PLAYERS',15,16), (10,'2 WAY RADIOS',17,18); SELECT * FROM nested_category ORDER BY category_id; +-------------+----------------------+-----+-----+ | category_id | name | lft | rgt | +-------------+----------------------+-----+-----+ | 1 | ELECTRONICS | 1 | 20 | | 2 | TELEVISIONS | 2 | 9 | | 3 | TUBE | 3 | 4 | | 4 | LCD | 5 | 6 | | 5 | PLASMA | 7 | 8 | | 6 | PORTABLE ELECTRONICS | 10 | 19 | | 7 | MP3 PLAYERS | 11 | 14 | | 8 | FLASH | 12 | 13 | | 9 | CD PLAYERS | 15 | 16 | | 10 | 2 WAY RADIOS | 17 | 18 | +-------------+----------------------+-----+-----+
由于left和right是MySQL的保留字,因此,字段名称用lft和rgt代替。每一个集合都是从lft开始到rgt结束,也就是集合的两个边界。
在树中也同样适用,
当为树状结构编号时,我们从左到右,一次一层,赋值按照从左到右的顺序遍历其子节点,这种方法称为先序遍历算法。
检索分层路径
由于子节点的lft值总在父节点的lft和rgt值之间,所以可以通过父节点连接到子节点上来检索整棵树。
SELECT node.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND parent.name = 'ELECTRONICS' ORDER BY node.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +----------------------+
这个方法并不需要考虑层数,而且不需要考虑节点的rgt。
检索所有叶子节点
由于每一个叶子节点的rgt=lft+1,那么只需要这一个条件即可。
SELECT name FROM nested_category WHERE rgt = lft + 1; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+
检索节点路径
不再需要多个join连接操作。
SELECT parent.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'FLASH' ORDER BY node.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | +----------------------+
检索节点深度
通过COUNT和GROUP BY函数来获取父节点的个数。
SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | ELECTRONICS | 0 | | TELEVISIONS | 1 | | TUBE | 2 | | LCD | 2 | | PLASMA | 2 | | PORTABLE ELECTRONICS | 1 | | MP3 PLAYERS | 2 | | FLASH | 3 | | CD PLAYERS | 2 | | 2 WAY RADIOS | 2 | +----------------------+-------+
甚至可以得到分层的缩进结果,
SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +-----------------------+
检索子树的深度
考虑到检索中需要自连接的node或parent,因此需要增加一个额外的连接来作为子查询来限制子树。
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | FLASH | 2 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+
检索节点的直接子节点
假设一个场景,当用户点击网站上电子产品的一个分类时,将呈现该分类下的产品,同时需要列出所有子分类,并不是全部分类。
为了限制显示分类的层数,需要使用HAVING字句,
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name HAVING depth <= 1 ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+
增加新节点
上面已经介绍了如何检索结果,那么如何才能增加新的节点呢?
如果希望在TELEVISIONS和PROTABLE ELECTRONICS节点之间增加一个新的节点,那么新节点的lft和rgt的值应该是10和11,那么所有大于10的节点(新节点右侧的节点)的lft和rgt都应该加2,如上图所示。
LOCK TABLE nested_category WRITE; SELECT @myRight := rgt FROM nested_category WHERE name = 'TELEVISIONS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight; INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2); UNLOCK TABLES
如果希望在叶子节点下增加节点,需要修改下查询语句,
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft FROM nested_category WHERE name = '2 WAY RADIOS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft; INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2); UNLOCK TABLES;```
###删除节点
删除叶子节点比较容易,只需要删除自己,而删除一个中间层节点就需要删除其所有子节点。在这个模型中,所有子节点的节点正好在lft和rgt之间。
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'GAME CONSOLES'; DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight; UNLOCK TABLES;
在某些情况下,只需要删除某个节点,但是并不希望删除该节点下的子节点数据。
通过把右侧所有节点的左右值-2,当前节点的子节点左右值-1
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'PORTABLE ELECTRONICS'; DELETE FROM nested_category WHERE lft = @myLeft; UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight; UNLOCK TABLES; ```
Mysql嵌套集合模型【省份城市示例】
父分类包围了其子分类。在数据表中,我们通过使用表示节点的嵌套关系的左值(left value)和右值(right value)来表现嵌套集合模型
中数据的分层特性。我们使用了lft和rgt来代替left和right,是因为在MySQL中left和right是保留字。
http://dev.mysql.com/doc/mysql/en/reserved-words.html,有一份详细的MySQL保留字清单。
那么,我们怎样决定左值和右值呢?我们从外层节点的最左侧开始,从左到右编号:
CREATE TABLE `region` ( `id` int(11) NOT NULL auto_increment, `name` varchar(30) default NULL, `parent_id` int(11) default NULL, `lft` int(10) unsigned default NULL, `rgt` int(10) unsigned default NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8; insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (1,'中国',0,1,20); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (2,'北京',1,2,5); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (3,'北京市',2,3,4); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (4,'上海',1,6,9); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (5,'上海市',4,7,8); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (6,'浙江',1,10,19); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (7,'金华市',6,15,16); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (8,'温州市',6,17,18); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (9,'杭州市',6,11,12); insert into `region`(`id`,`name`,`parent_id`,`lft`,`rgt`) values (10,'宁波市',6,13,14);
查询全部节点分成展示:
SELECT CONCAT(REPEAT(' ', COUNT(parent.id)-1), node.name) AS name, node.id,node.lft,node.rgt, COUNT(parent.id) FROM region AS node, region AS parent where node.lft BETWEEN parent.lft AND parent.rgt group by node.id ORDER BY node.lft;
查询节点路径:
select parent.name, parent.id from region as node, region as parent
where node.lft BETWEEN parent.lft and parent.rgt and node.name='金华市';
参考
http://dev.mysql.com/tech-resources/articles/hierarchical-data.html
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索模型
json多层集合嵌套解析、嵌套集合模型、嵌套集合、java 集合嵌套、mybatis 对象嵌套集合,以便于您获取更多的相关知识。