浅谈算法和数据结构 五 优先级队列与堆排序

在很多应用中,我们通常需要按照优先级情况对待处理对象进行处理,比如首先处理优先级最高的对象,然后处理次高的对象。最简单的一个例子就是,在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话。

在这种情况下,我们的数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue) 。

本文首先介绍优先级队列的定义,有序和无序数组以及堆数据结构实现优先级队列,最后介绍了基于优先级队列的堆排序(Heap Sort)

更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/

一 定义

优先级队列和通常的栈和队列一样,只不过里面的每一个元素都有一个”优先级”,在处理的时候,首先处理优先级最高的。如果两个元素具有相同的优先级,则按照他们插入到队列中的先后顺序处理。

优先级队列可以通过链表,数组,堆或者其他数据结构实现。

二 实现

数组

最简单的优先级队列可以通过有序或者无序数组来实现,当要获取最大值的时候,对数组进行查找返回即可。代码实现起来也比较简单,这里就不列出来了。

如上图:

· 如果使用无序数组,那么每一次插入的时候,直接在数组末尾插入即可,时间复杂度为O(1),但是如果要获取最大值,或者最小值返回的话,则需要进行查找,这时时间复杂度为O(n)。

· 如果使用有序数组,那么每一次插入的时候,通过插入排序将元素放到正确的位置,时间复杂度为O(n),但是如果要获取最大值的话,由于元阿苏已经有序,直接返回数组末尾的 元素即可,所以时间复杂度为O(1).

所以采用普通的数组或者链表实现,无法使得插入和排序都达到比较好的时间复杂度。所以我们需要采用新的数据结构来实现。下面就开始介绍如何采用二叉堆(binary heap)来实现优先级队列

二叉堆

二叉堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。 有了这一性质,那么二叉堆上最大值就是根节点了。

二叉堆的表现形式:我们可以使用数组的索引来表示元素在二叉堆中的位置。

从二叉堆中,我们可以得出:

· 元素k的父节点所在的位置为[k/2]

· 元素k的子节点所在的位置为2k和2k+1

跟据以上规则,我们可以使用二维数组的索引来表示二叉堆。通过二叉堆,我们可以实现插入和删除最大值都达到O(nlogn)的时间复杂度。

对于堆来说,最大元素已经位于根节点,那么删除操作就是移除并返回根节点元素,这时候二叉堆就需要重新排列;当插入新的元素的时候,也需要重新排列二叉堆以满足二叉堆的定义。现在就来看这两种操作。

从下至上的重新建堆操作: 如果一个节点的值大于其父节点的值,那么该节点就需要上移,一直到满足该节点大于其两个子节点,而小于其根节点为止,从而达到使整个堆实现二叉堆的要求。

由上图可以看到,我们只需要将该元素k和其父元素k/2进行比较,如果比父元素大,则交换,然后迭代,一直到比父元素小为止。

时间: 2024-12-03 02:03:34

浅谈算法和数据结构 五 优先级队列与堆排序的相关文章

浅谈算法和数据结构 一 栈和队列

最近晚上在家里看Algorithems,4th Edition,我买的英文版,觉得这本书写的比较浅显易懂,而且"图码并茂",趁着这次机会打算好好学习做做笔记,这样也会印象深刻,这也是写这一系列文章的原因.另外普林斯顿大学在Coursera 上也有这本书同步的公开课,还有另外一门算法分析课,这门课程的作者也是这本书的作者,两门课都挺不错的. 计算机程序离不开算法和数据结构,本文简单介绍栈(Stack)和队列(Queue)的实现,.NET中与之相关的数据结构,典型应用等,希望能加深自己对这

浅谈算法和数据结构 十一 哈希表

在前面的系列文章中,依次介绍了基于无序列表的顺序查找,基于有序数组的二分查找,平衡查找树,以及红黑树,下图是他们在平均以及最差情况下的时间复杂度: 可以看到在时间复杂度上,红黑树在平均情况下插入,查找以及删除上都达到了lgN的时间复杂度. 那么有没有查找效率更高的数据结构呢,答案就是本文接下来要介绍了散列表,也叫哈希表(Hash Table) 什么是哈希表 哈希表就是一种以 键-值(key-indexed) 存储数据的结构,我们只要输入待查找的值即key,即可查找到其对应的值. 哈希的思路很简单

浅谈算法和数据结构 三 合并排序

合并排序,顾名思义,就是通过将两个有序的序列合并为一个大的有序的序列的方式来实现排序.合并排序是一种典型的分治算法:首先将序列分为两部分,然后对每一部分进行循环递归的排序,然后逐个将结果进行合并. 合并排序最大的优点是它的时间复杂度为O(nlgn),这个是我们之前的选择排序和插入排序所达不到的.他还是一种稳定性排序,也就是相等的元素在序列中的相对位置在排序前后不会发生变化.他的唯一缺点是,需要利用额外的N的空间来进行排序. 一 原理 合并排序依赖于合并操作,即将两个已经排序的序列合并成一个序列,

浅谈算法和数据结构 二 基本排序算法

本篇开始学习排序算法.排序与我们日常生活中息息相关,比如,我们要从电话簿中找到某个联系人首先会按照姓氏排序.买火车票会按照出发时间或者时长排序.买东西会按照销量或者好评度排序.查找文件会按照修改时间排序等等.在计算机程序设计中,排序和查找也是最基本的算法,很多其他的算法都是以排序算法为基础,在一般的数据处理或分析中,通常第一步就是进行排序,比如说二分查找,首先要对数据进行排序.在Donald Knuth 的计算机程序设计的艺术这四卷书中,有一卷是专门介绍排序和查找的. 排序的算法有很多,在维基百

浅谈算法和数据结构 十二 无向图相关算法基础

从这篇文章开始介绍图相关的算法,这也是Algorithms在线课程第二部分的第一次课程笔记. 图的应用很广泛,也有很多非常有用的算法,当然也有很多待解决的问题,根据性质,图可以分为无向图和有向图.本文先介绍无向图,后文再介绍有向图. 之所以要研究图,是因为图在生活中应用比较广泛: 无向图 图是若干个顶点(Vertices)和边(Edges)相互连接组成的.边仅由两个顶点连接,并且没有方向的图称为无向图. 在研究图之前,有一些定义需要明确,下图中表示了图的一些基本属性的含义,这里就不多说明. 图的

浅谈算法和数据结构 十 平衡查找树之B树

前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为"在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据.对其进行排序并允许以O(log n)的时间复杂度运行进行查找.顺序读取.插入和删除的数据结构.B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树.与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作.B-tree算法减少定位记录时所经历的中间过程,从而

浅谈算法和数据结构 九 平衡查找树之红黑树

前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个

浅谈算法和数据结构 七 二叉查找树

前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary

浅谈算法和数据结构 六 符号表及其基本实现

前面几篇文章介绍了基本的排序算法,排序通常是查找的前奏操作.从本文开始介绍基本的查找算法. 在介绍查找算法,首先需要了解符号表这一抽象数据结构,本文首先介绍了什么是符号表,以及这一抽象数据结构的的API,然后介绍了两种简单的符号表的实现方式. 一符号表 在开始介绍查找算法之前,我们需要定义一个名为符号表(Symbol Table)的抽象数据结构,该数据结构类似我们再C#中使用的Dictionary,他是对具有键值对元素的一种抽象,每一个元素都有一个key和value,我们可以往里面添加key,v