微服务实战(三):深入微服务架构的进程间通信

本文讲的是微服务实战(三):深入微服务架构的进程间通信,【编者的话】这是采用微服务架构创建自己应用系列第三篇文章。第一篇介绍了微服务架构模式,和单体式模式进行了比较,并且讨论了使用微服务架构的优缺点。第二篇描述了采用微服务架构应用客户端之间如何采用API Gateway方式进行通信。在这篇文章中,我们将讨论系统服务之间如何通信。

简介

在单体式应用中,各个模块之间的调用是通过编程语言级别的方法或者函数来实现的。但是一个基于微服务的分布式应用是运行在多台机器上的。一般来说,每个服务实例都是一个进程。因此,如下图所示,服务之间的交互必须通过进程间通信(IPC)来实现。

后面我们将会详细介绍IPC技术,现在我们先来看下设计相关的问题。

交互模式

当为某一个服务选择IPC时,首先需要考虑服务之间如何交互。客户端和服务器之间有很多的交互模式,我们可以从两个维度进行归类。第一个维度是一对一还是一对多:

• 一对一:每个客户端请求有一个服务实例来响应。
• 一对多:每个客户端请求有多个服务实例来响应

第二个维度是这些交互式同步还是异步:

• 同步模式:客户端请求需要服务端即时响应,甚至可能由于等待而阻塞。
• 异步模式:客户端请求不会阻塞进程,服务端的响应可以是非即时的。

下表显示了不同交互模式:

一对一的交互模式有以下几种方式:

• 请求/响应:一个客户端向服务器端发起请求,等待响应。客户端期望此响应即时到达。在一个基于线程的应用中,等待过程可能造成线程阻塞。
• 通知(也就是常说的单向请求):一个客户端请求发送到服务端,但是并不期望服务端响应。
• 请求/异步响应:客户端发送请求到服务端,服务端异步响应请求。客户端不会阻塞,而且被设计成默认响应不会立刻到达。

一对多的交互模式有以下几种方式:

• 发布/ 订阅模式:客户端发布通知消息,被零个或者多个感兴趣的服务消费。

• 发布/异步响应模式:客户端发布请求消息,然后等待从感兴趣服务发回的响应。

每个服务都是以上这些模式的组合,对某些服务,一个IPC机制就足够了;而对另外一些服务则需要多种IPC机制组合。下图展示了在一个打车服务请求中服务之间是如何通信的。

上图中的服务通信使用了通知、请求/响应、发布/订阅等方式。例如,乘客通过移动端给『行程管理服务』发送通知,希望申请一次出租服务。『行程管理服务』发送请求/响应消息给『乘客服务』以确认乘客账号是有效的。紧接着创建此次行程,并用发布/订阅交互模式通知其他服务,包括定位可用司机的调度服务。

现在我们了解了交互模式,接下来我们一起来看看如何定义API。

定义API

API是服务端和客户端之间的契约。不管选择了什么样的IPC机制,重要的是使用某种交互式定义语言(IDL)来精确定义一个服务的API。甚至有一些关于使用API first的方法(API-first approach)来定义服务的很好的理由。在开发之前,你需要先定义服务的接口,并与客户端开发者详细讨论确认。这样的讨论和设计会大幅度提到API的可用度以及满意度。

在本文后半部分你将会看到,API定义实质上依赖于选择哪种IPC。如果使用消息机制,API则由消息频道(channel)和消息类型构成;如果选择使用HTTP机制,API则由URL和请求、响应格式构成。后面将会详细描述IDL。

API的演化

服务端API会不断变化。在一个单体式应用中经常会直接修改API,然后更新给所有的调用者。而在基于微服务架构应用中,这很困难,即使只有一个服务使用这个API,不可能强迫用户跟服务端保持同步更新。另外,开发者可能会尝试性的部署新版本的服务,这个时候,新旧服务就会同事运行。你需要知道如何处理这些问题。

你如何处理API变化,这依赖于这些变化有多大。某些改变是微小的,并且可以和之前版本兼容。比如,你可能只是为某个请求和响应添加了一个属性。设计客户端和服务端时候应该遵循健壮性原理,这很重要。客户端使用旧版API应该也能和新版本一起工作。服务端仍然提供默认响应值,客户端忽略此版本不需要的响应。使用IPC机制和消息格式对于API演化很有帮助。

但是有时候,API需要进行大规模的改动,并且可能与之前版本不兼容。因为你不可能强制让所有的客户端立即升级,所以支持老版本客户端的服务还需要再运行一段时间。如果你正在使用基于基于HTTP机制的IPC,例如REST,一种解决方案是把版本号嵌入到URL中。每个服务都可能同时处理多个版本的API。或者,你可以部署多个实例,每个实例负责处理一个版本的请求。

处理部分失败

在上一篇关于API gateway的文章中,我们了解到分布式系统中部分失败是普遍存在的问题。因为客户端和服务端是都是独立的进程,一个服务端有可能因为故障或者维护而停止服务,或者此服务因为过载停止或者反应很慢。

考虑这篇文章中描述的部分失败的场景。假设推荐服务无法响应请求,那客户端就会由于等待响应而阻塞,这不仅会给客户带来很差的体验,而且在很多应用中还会占用很多资源,比如线程,以至于到最后由于等待响应被阻塞的客户端越来越多,线程资源被耗费完了。如下图所示:

为了预防这种问题,设计服务时候必须要考虑部分失败的问题。

Netfilix提供了一个比较好的解决方案,具体的应对措施包括:

• 网络超时:当等待响应时,不要无限期的阻塞,而是采用超时策略。使用超时策略可以确保资源不会无限期的占用。
• 限制请求的次数:可以为客户端对某特定服务的请求设置一个访问上限。如果请求已达上限,就要立刻终止请求服务。
• 断路器模式(Circuit Breaker Pattern):记录成功和失败请求的数量。如果失效率超过一个阈值,触发断路器使得后续的请求立刻失败。如果大量的请求失败,就可能是这个服务不可用,再发请求也无意义。在一个失效期后,客户端可以再试,如果成功,关闭此断路器。
• 提供回滚:当一个请求失败后可以进行回滚逻辑。例如,返回缓存数据或者一个系统默认值。

Netflix Hystrix是一个实现相关模式的开源库。如果使用JVM,推荐考虑使用Hystrix。而如果使用非JVM环境,你可以使用类似功能的库。

IPC技术

现在有很多不同的IPC技术。服务之间的通信可以使用同步的请求/响应模式,比如基于HTTP的REST或者Thrift。另外,也可以选择异步的、基于消息的通信模式,比如AMQP或者STOMP。除以之外,还有其它的消息格式供选择,比如JSON和XML,它们都是可读的,基于文本的消息格式。当然,也还有二进制格式(效率更高)的,比如Avro和Protocol Buffer。接下来我们将会讨论异步的IPC模式和同步的IPC模式,首先来看异步的。

异步的,基于消息通信

当使用基于异步交换消息的进程通信方式时,一个客户端通过向服务端发送消息提交请求。如果服务端需要回复,则会发送另外一个独立的消息给客户端。因为通信是异步的,客户端不会因为等待而阻塞,相反,客户端理所当然的认为响应不会立刻接收到。

一个消息由头部(元数据例如发送方)和消息体构成。消息通过channel发送,任何数量的生产者都可以发送消息到channel,同样的,任何数量的消费者都可以从渠道中接受数据。有两类channel,点对点发布/订阅。点对点channel会把消息准确的发送到某个从channel读取消息的消费者,服务端使用点对点来实现之前提到的一对一交互模式;而发布/订阅则把消息投送到所有从channel读取数据的消费者,服务端使用发布/订阅channel来实现上面提到的一对多交互模式。

下图展示了打车软件如何使用发布/订阅:

行程管理服务在发布-订阅channel内创建一个行程消息,并通知调度服务有一个新的行程请求,调度服务发现一个可用的司机然后向发布-订阅channel写入司机建议消息(Driver Proposed message)来通知其他服务。

有很多消息系统可以选择,最好选择一种支持多编程语言的。一些消息系统支持标准协议,例如AMQP和STOMP。其他消息系统则使用独有的协议,有大量开源消息系统可选,比如RabbitMQApache KafkaApache ActiveMQNSQ。它们都支持某种形式的消息和channel,并且都是可靠的、高性能和可扩展的;然而,它们的消息模型完全不同。

使用消息机制有很多优点:

• 解耦客户端和服务端:客户端只需要将消息发送到正确的channel。客户端完全不需要了解具体的服务实例,更不需要一个发现机制来确定服务实例的位置。

• Message Buffering:在一个同步请求/响应协议中,例如HTTP,所有的客户端和服务端必须在交互期间保持可用。而在消息模式中,消息broker将所有写入channel的消息按照队列方式管理,直到被消费者处理。也就是说,在线商店可以接受客户订单,即使下单系统很慢或者不可用,只要保持下单消息进入队列就好了。

• 弹性客户端-服务端交互:消息机制支持以上说的所有交互模式。

• 直接进程间通信:基于RPC机制,试图唤醒远程服务看起来跟唤醒本地服务一样。然而,因为物理定律和部分失败可能性,他们实际上非常不同。消息使得这些不同非常明确,开发者不会出现问题。

然而,消息机制也有自己的缺点:

• 额外的操作复杂性:消息系统需要单独安装、配置和部署。消息broker(代理)必须高可用,否则系统可靠性将会受到影响。

• 实现基于请求/响应交互模式的复杂性:请求/响应交互模式需要完成额外的工作。每个请求消息必须包含一个回复渠道ID和相关ID。服务端发送一个包含相关ID的响应消息到channel中,使用相关ID来将响应对应到发出请求的客户端。也许这个时候,使用一个直接支持请求/响应的IPC机制会更容易些。

现在我们已经了解了基于消息的IPC,接下来我们来看看基于请求/响应模式的IPC。

同步的,基于请求/响应的IPC

当使用一个同步的,基于请求/响应的IPC机制,客户端向服务端发送一个请求,服务端处理请求,返回响应。一些客户端会由于等待服务端响应而被阻塞,而另外一些客户端也可能使用异步的、基于事件驱动的客户端代码(Future或者Rx Observable的封装)。然而,不像使用消息机制,客户端需要响应及时返回。这个模式中有很多可选的协议,但最常见的两个协议是REST和Thrift。首先我们来看下REST。

REST

现在很流行使用RESTful风格的API。REST是基于HTTP协议的。另外,一个需要理解的比较重要的概念是,REST是一个资源,一般代表一个业务对象,比如一个客户或者一个产品,或者一组商业对象。REST使用HTTP语法协议来修改资源,一般通过URL来实现。举个例子,GET请求返回一个资源的简单信息,响应格式通常是XML或者JSON对象格式。POST请求会创建一个新资源,PUT请求更新一个资源。这里引用下REST之父Roy Fielding说的:

当需要一个整体的、重视模块交互可扩展性、接口概括性、组件部署独立性和减小延迟、提供安全性和封装性的系统时,REST可以提供这样一组满足需求的架构。

下图展示了打车软件是如何使用REST的。

乘客通过移动端向行程管理服务的/trips资源提交了一个POST请求。行程管理服务收到请求之后,会发送一个GET请求到乘客管理服务以获取乘客信息。当确认乘客信息之后,紧接着会创建一个行程,并向移动端返回201(译者注:状态码)响应。

很多开发者都表示他们基于HTTP的API是RESTful的。但是,如同Fielding在他的博客中所说,这些API可能并不都是RESTful的。Leonard Richardson为REST定义了一个成熟度模型,具体包含以下4个层次(摘自IBM):

  • 第一个层次(Level 0)的 Web 服务只是使用 HTTP 作为传输方式,实际上只是远程方法调用(RPC)的一种具体形式。SOAP 和 XML-RPC 都属于此类。
  • 第二个层次(Level 1)的 Web 服务引入了资源的概念。每个资源有对应的标识符和表达。
  • 第三个层次(Level 2)的 Web 服务使用不同的 HTTP 方法来进行不同的操作,并且使用 HTTP 状态码来表示不同的结果。如 HTTP GET 方法来获取资源,HTTP DELETE 方法来删除资源。
  • 第四个层次(Level 3)的 Web 服务使用 HATEOAS。在资源的表达中包含了链接信息。客户端可以根据链接来发现可以执行的动作。

使用基于HTTP的协议有如下好处:

• HTTP非常简单并且大家都很熟悉。
• 可以使用浏览器扩展(比如Postman)或者curl之类的命令行来测试API。
• 内置支持请求/响应模式的通信。
• HTTP对防火墙友好的。
• 不需要中间代理,简化了系统架构。

不足之处包括:

• 只支持请求/响应模式交互。可以使用HTTP通知,但是服务端必须一直发送HTTP响应才行。
• 因为客户端和服务端直接通信(没有代理或者buffer机制),在交互期间必须都在线。
• 客户端必须知道每个服务实例的URL。如之前那篇关于API Gateway的文章所述,这也是个烦人的问题。客户端必须使用服务实例发现机制。

开发者社区最近重新发现了RESTful API接口定义语言的价值。于是就有了一些RESTful风格的服务框架,包括RAMLSwagger。一些IDL,例如Swagger允许定义请求和响应消息的格式。其它的,例如RAML,需要使用另外的标识,例如JSON Schema。对于描述API,IDL一般都有工具来定义客户端和服务端骨架接口。

Thrift

Apache Thrift是一个很有趣的REST的替代品。它是Facebook实现的一种高效的、支持多种编程语言的远程服务调用的框架。Thrift提供了一个C风格的IDL定义API。使用Thrift编译器可以生成客户端和服务器端代码框架。编译器可以生成多种语言的代码,包括C++、Java、Python、PHP、Ruby, Erlang和Node.js。

Thrift接口包括一个或者多个服务。服务定义类似于一个JAVA接口,是一组方法。Thrift方法可以返回响应,也可以被定义为单向的。返回值的方法其实就是请求/响应类型交互模式的实现。客户端等待响应,并可能抛出异常。单向方法对应于通知类型的交互模式,服务端并不返回响应。

Thrift支持多种消息格式:JSON、二进制和压缩二进制。二进制比JSON更高效,因为二进制解码更快。同样原因,压缩二进制格式可以提供更高级别的压缩效率。JSON,是易读的。Thrift也可以在裸TCP和HTTP中间选择,裸TCP看起来比HTTP更加有效。然而,HTTP对防火墙,浏览器和人来说更加友好。

消息格式

了解完HTTP和Thrift后,我们来看下消息格式方面的问题。如果使用消息系统或者REST,就可以选择消息格式。其它的IPC机制,例如Thrift可能只支持部分消息格式,也许只有一种。无论哪种方式,我们必须使用一个跨语言的消息格式,这非常重要。因为指不定哪天你会使用其它语言。

有两类消息格式:文本和二进制。文本格式的例子包括JSON和XML。这种格式的优点在于不仅可读,而且是自描述的。在JSON中,一个对象就是一组键值对。类似的,在XML中,属性是由名字和值构成。消费者可以从中选择感兴趣的元素而忽略其它部分。同时,小幅度的格式修改可以很容器向后兼容。

XML文档结构是由XML schema定义的。随着时间发展,开发者社区意识到JSON也需要一个类似的机制。一个选择是使用JSON Schema,要么是独立的,要么是例如Swagger的IDL。

基于文本的消息格式最大的缺点是消息会变得冗长,特别是XML。因为消息是自描述的,所以每个消息都包含属性和值。另外一个缺点是解析文本的负担过大。所以,你可能需要考虑使用二进制格式。

二进制的格式也有很多。如果使用的是Thrift RPC,那可以使用二进制Thrift。如果选择消息格式,常用的还包括Protocol BuffersApache Avro。它们都提供典型的IDL来定义消息架构。一个不同点在于Protocol Buffers使用的是加标记(tag)的字段,而Avro消费者需要知道模式(schema)来解析消息。因此,使用前者,API更容易演进。这篇博客很好的比较了Thrift、Protocol Buffers、Avro三者的区别。

总结

微服务必须使用进程间通信机制来交互。当设计服务的通信模式时,你需要考虑几个问题:服务如何交互,每个服务如何标识API,如何升级API,以及如何处理部分失败。微服务架构有两类IPC机制可选,异步消息机制和同步请求/响应机制。在下一篇文章中,我们将会讨论微服务架构中的服务发现问题。

原文链接:Building Microservices: Inter-Process Communication in a Microservices Architecture(翻译:杨峰 校对:李颖杰)

原文发布时间为:2015-08-01

本文作者:hokingyang

本文来自合作伙伴DockerOne,了解相关信息可以关注DockerOne。

原文标题:微服务实战(三):深入微服务架构的进程间通信

时间: 2024-10-11 06:21:57

微服务实战(三):深入微服务架构的进程间通信的相关文章

微服务实战(六):选择微服务部署策略

本文讲的是微服务实战(六):选择微服务部署策略,[编者的话]这篇博客是用微服务建应用的第六篇,第一篇介绍了微服务架构模板,并且讨论了使用微服务的优缺点.随后的文章讨论了微服务不同方面:使用API网关,进程间通讯,服务发现和事件驱动数据管理.这篇文章,我们将讨论部署微服务的策略. 本系列文章: 微服务实战(一):微服务架构的优势与不足 微服务实战(二):使用API Gateway 微服务实战(三):深入微服务架构的进程间通信 微服务实战(四):服务发现的可行方案以及实践案例 微服务实践(五):微服

微服务实战(一):微服务架构的优势与不足

本文讲的是微服务实战(一):微服务架构的优势与不足,[编者的话]本文来自Nginx官方博客,是微服务系列文章的第一篇,主要探讨了传统的单体式应用的不足,以及微服务架构的优势与挑战.正如作者所说,微服务架构更适合用于构建复杂的应用,尽管它也有自己的不足. 这篇文章作者是Chris Richardson,他是早期基于Java的Amazonite EC2 PaaS平台CloudFoundry.com的创始人.现在他为企业提供如何开发和部署应用的咨询服务.他也经常在http://microservice

微服务实战(二):使用API Gateway

本文讲的是微服务实战(二):使用API Gateway,[编者的话]本系列的第一篇介绍了微服务架构模式.它讨论了采用微服务的优点和缺点,除了一些复杂的微服务,这种模式还是复杂应用的理想选择. 当你决定将应用作为一组微服务时,需要决定应用客户端如何与微服务交互.在单体式程序中,通常只有一组冗余的或者负载均衡的服务提供点.在微服务架构中,每一个微服务暴露一组细粒度的服务提供点.在本篇文章中,我们来看它如何影响客户端到服务端通信,同时提出一种API Gateway的方法. 介绍 假定你正在为在线购物应

微服务实战之春云与刀客(二)—— Spring cloud 实现仿RPC面向接口调用方式

概述 像HSF.dubbo这种RPC框架,客户端都是通过接口(Interface)调用服务的,无须自己拼装调用方式,客户端就像调用本地类方法一样.而spring cloud原生的客户端调用时通过RestTemplate发起Http调用请求,需要手动指定URL和参数,在使用上比较费劲,后来出现了申明式服务调用--Spring Cloud Feign,终于使调用得到了解放,而本文就是讲述如何极致地利用Feign来进行微服务开发,如何定义代码结构规范. RestTemplate RestTemplat

微服务实战之春云与刀客(一)—— 微服务开篇

春云即spring cloud ,刀客即docker,这种翻译似乎比较好玩!这里是春云与刀客不得不说的故事,不会讲太多的入门,更多的是实战和一些规范,以及通过春云和刀客如何简化微服务开发,这些在一些书籍都是没有介绍的. 本篇讲微服务概念和技术选型. 什么是微服务(Microservice) 通常别人问这个问题都不知道如何回答.其实很简单,按字面拆解就是,微服务就是:微小的服务.什么是微小?就是单一职责什么是单一职责?就是一个服务只干一类事情,多的事情我不干.我这个服务只管怎么按头,不管捏脚.所以

微服务实践(七):从单体式架构迁移到微服务架构

本文讲的是微服务实践(七):从单体式架构迁移到微服务架构,[编者的话]这是用微服务开发应用系列博客的第七篇也是最后一篇.第一篇中介绍了微服务架构模式,并且讨论了微服架构的优缺点:接续文章讨论了微服务架构不同方面:使用API网关,进程间通信,服务发现,事件驱动数据管理以及部署微服务.本篇,我们将探讨将应用从单体式架构迁移到微服务架构需要考虑的策略. 希望读者通过本系列文章对微服务优缺点有一个比较好的理解,以及何时使用这种架构.也许微服务架构比较适合你的应用.也许你正在开发一个大型.复杂单体式应用,

微服务架构的优势与不足

微服务正在博客.社交媒体讨论组和会议演讲中获得越来越多的关注,在Gartner的2014 Hype Cycle上它的排名非常靠前.同时,软件社区中也有不少持怀疑论者,认为微服务不是什么新东西.Naysayers认为这就是SOA架构的重新包装.然 而,尽管存在着不同的争论,微服务架构模式却正在为敏捷部署以及复杂企业应用实施提供巨大的帮助. 首先我们看看为什么要使用微服务. 开发单体式应用 假设你正准备开发一款与Uber和Hailo竞争的出租车调度软件,经过初步会议和需求分析,你可能会手动或者使用基

从 Spring Cloud 开始,聊聊微服务架构实践之路

本文讲的是从 Spring Cloud 开始,聊聊微服务架构实践之路[编者的话]随着公司业务量的飞速发展,平台面临的挑战已经远远大于业务,需求量不断增加,技术人员数量增加,面临的复杂度也大大增加.在这个背景下,平台的技术架构也完成了从传统的单体应用到微服务化的演进. 系统架构的演进过程 单一应用架构(第一代架构) 这是平台最开始的情况,当时流量小,为了节约成本,并将所有应用都打包放到一个应用里面,采用的架构为 .NET SQL Server: 表示层:位于最外层(最上层),最接近用户.用于显示数

基于微服务架构,实解容器级DevOps平台的建设

导读:本文以"实践过程中问题与思考"为主体,与大家分享其中的过程和经验,希望大家在后续的工作中能够避免相关问题,形成更佳实践. 首先简单说下我们要做什么,不谈理念,不谈哲学,我们要做一款基于微服务架构,可以同时运行在公有云和私有云上的容器云平台,以DevOps为目标,提升协作效率,快速交付. 为什么选择阿里云 现在的公有云如雨后春笋,国外如AWS.Azure.Bluemix,国内如阿里云.腾讯云.DaoCloud.goodrain等,都可以给大家提供丰富的云基础设施和上层服务,那为什么