【数据蒋堂】第32期:JOIN简化 - 意义总结

我们重新审视和定义了等值JOIN运算,并简化了语法。一个直接的效果显然是让语句书写和理解更容易。外键属性化、同维表等同化和主子表一体化方案直接消除了显式的关联运算,也更符合自然思维;维度对齐则可让程序员不再关心表间关系,降低语句的复杂度。

简化JOIN的好处不仅在于此,还能够降低出错率

我们知道,SQL允许用WHERE来写JOIN运算的过滤条件(回到原始的笛卡尔积式的定义),很多程序员也习惯于这么写。当JOIN表只有两三个的时候,那问题还不大,但如果JOIN表有七八个甚至十几个的时候,漏写一个JOIN条件是很有可能的。而漏写了JOIN条件意味着将发生多对多的完全叉乘,而这个SQL却可以正常执行,一方面计算结果会出错(回忆一下以前说过的,发生多对多JOIN时,大概率是语句写错了),另一方面,如果漏写条件的表很大,笛卡尔积的规模将是平方级的,这极有可能把数据库直接“跑死”!

采用简化后的JOIN语法,就不可能发生漏写JOIN条件的情况了。因为对JOIN的理解不再是以笛卡尔积为基础,而且设计这些语法时已经假定了多对多关联没有业务意义,这个规则下写不出完全叉乘的运算。

对于多个子表分组后与主表对齐的运算,在SQL中要写成多个子查询的形式。但如果只有一个子表时,可以先JOIN再GROUP,这时不需要子查询。有些程序员没有仔细分析,会把这种写法推广到多个子表的情况,也先JOIN再GROUP,可以避免使用子查询,但计算结果是错误的。

使用维度对齐的写法就不容易发生这种错误了,无论多少个子表,都不需要子查询,一个子表和多个子表的写法完全相同。

重新看待JOIN运算,最关键的作用在于实现关联查询

当前敏捷BI产品非常火热,各家产品都宣称能够让业务人员拖拖拽拽就完成想要的查询报表。但实际应用效果会远不如人意,业务人员仍然要经常求助于IT部门。造成这个现象的主要原因在于大多数业务查询都是有过程的计算,不大可能由直接不会编程的业务人员独立完成。但是,仍有约三成左右的业务查询并不涉及多步过程,而业务人员仍然无法完成。

这是由于大多数敏捷BI产品(以及多年前流行的OLAP产品)都不支持关联查询。这些产品的工作模式是先由技术人员构建模型,再由业务人员基于模型在界面上进行查询。而所谓建模,其实就是生成一个逻辑上或物理上的单表,业务人员只能在这个单表的范围内查询分析,无论界面做得多么流畅炫酷,在数据获取层面都不可能超越这个事先构建好的单表范围。用户的查询需求一旦超出了这个单表,需要关联到其它表中数据时,就要由技术人员再次建模。建模实际上要针对不同的关联需求分别实现,我们称之为按需建模。但实际上,有意义的查询绝大多数都有关联需求,技术人员也不可能事先预测所有的关联,就算预测了也不可能把所有的关联可能性都事先做好。结果是,要么建模动作频频发生,要么业务用户没法使用,无论如何,这些敏捷BI产品都会失去敏捷性。

为什么这些BI产品不能支持关联查询呢?因为并不容易,其根源就在于SQL对JOIN的定义过于简单,导致表间关联过于繁琐,超出业务人员的理解能力,直接把数据结构暴露出来由业务用户自己完成JOIN运算是不可能的。有些BI产品的界面协助下有一些改善,在事先定义好维度后,可以让业务人员正确处理没有形成环的关联关系以及同表内没有相同维度的关联情况,全自关联(形成环)和同表多同维字段仍需要再建模去解决,这些细节我们也留到讲述维度概念时来再详细讨论。

但是,如果改变了对JOIN运算的看法,关联查询可以从根本上得到解决。回忆前面讲过的三种JOIN及其简化手段,我们事实上把这几种情况的多表关联都看成了单表查询,而业务用户对于单表查询并没有理解障碍。无非就是表的属性(字段)稍复杂了一些:可能有子属性(外键字段指向的外键表),子属性可能还有子属性(多层的外键表),有些字段取值是集合而非单值(子表看作为主表的字段)。发生自关联也不会影响理解(前面的例子就是个自关联),同表有相同维度也不碍事(各自有各自的子属性)。在这种关联机制下,技术人员只要一次性把数据结构(元数据)定义好,在合适的界面下,由业务人员可以自己实现JOIN运算,不再需要技术人员的参与。数据建模只发生于数据结构改变的时刻,而不需要为新的关联需求建模,这也就是非按需建模

原文发布时间为:2017-11-28

本文作者:蒋步星

时间: 2024-09-20 10:41:36

【数据蒋堂】第32期:JOIN简化 - 意义总结的相关文章

数据蒋堂 | JOIN简化 - 意义总结

简化JOIN的好处不仅在于此,还能够降低出错率. 我们知道,SQL允许用WHERE来写JOIN运算的过滤条件(回到原始的笛卡尔积式的定义),很多程序员也习惯于这么写.当JOIN表只有两三个的时候,那问题还不大,但如果JOIN表有七八个甚至十几个的时候,漏写一个JOIN条件是很有可能的.而漏写了JOIN条件意味着将发生多对多的完全叉乘,而这个SQL却可以正常执行,一方面计算结果会出错(回忆一下以前说过的,发生多对多JOIN时,大概率是语句写错了),另一方面,如果漏写条件的表很大,笛卡尔积的规模将是

【数据蒋堂】第31期:JOIN简化 - 维度对齐

那么问题来了,这显然是个有业务意义的JOIN,它算是前面所说的哪一类呢? 这个JOIN涉及了表Orders和子查询A与B,仔细观察会发现,子查询带有GROUP BY id的子句,显然,其结果集将以id为主键.这样,JOIN涉及的三个表(子查询也算作是个临时表)的主键是相同的,它们是一对一的同维表,仍然在前述的范围内. 但是,这个同维表JOIN却不能用上一期说的写法简化,子查询A,B都不能省略不写. 可以简化书写的原因在于:我们假定事先知道数据结构中这些表之关联关系.用技术术语的说法,就是知道数据

【数据蒋堂】第30期:JOIN简化 - 消除关联

我们将等值JOIN分成三种情况来分别讨论,分情况相当于加强了条件,我们可以充分利用每种情况下的特征. 1. 外键属性化 先看个例子,设有如下两个表: employee表和delpartment表的主键都是其中的id字段,employee表的department字段是指向department表的外键,department表的manager字段又是指向employee表的外键.这是很常规的表结构设计. 现在我们想问一下:哪些美国籍员工有一个中国籍经理? 用SQL写出来是这样的: SELECT A.*

数据蒋堂 | JOIN运算剖析

JOIN是SQL中用于多表关联的运算,无论从程序员编写还是数据库实现角度来看,JOIN都是SQL中最难的运算. 其实,SQL对JOIN的定义非常简单,就是对两个集合(表)做笛卡尔积后再按某种条件过滤,写出来的语法也就是A JOIN B ON ...的形式.原则上,笛卡尔积后的结果集应当是以两集合成员构成的二元组为成员,不过由于SQL中的集合成员总是有字段的记录,而且也不支持泛型数据类型来描述成员为记录的二元组,所以就简单地把结果集处理成由两表记录的字段合并后构成的新记录集合.这也是JOIN一词在

【数据蒋堂】第15期:开放的计算能力为数据库瘦身

[数据蒋堂]第14期:计算封闭性导致臃肿的数据库 我们在上一期谈到,数据库的臃肿,也就是过多的中间表以及相关存储过程,是由于其计算封闭性造成的.如果能够实现独立的计算引擎,使计算不再依赖于数据库提供,那么就可以为数据库瘦身了. 内部来源的中间数据不必再以数据表的形式落地在数据库中,而可以放到文件系统中,由外部计算引擎提供进一步的计算能力.对于只读的中间数据,使用文件存储时不需要考虑再改写,可以更为紧致并采用一定的压缩手段,而且在访问时也不必考虑事务一致性,机制大为简化,这样能获得比数据库更好多的

【数据蒋堂】第13期:怎样看待存储过程的移植困难

存储过程移植困难是经常被诟病的,在罗列存储过程的缺点时,这一条几乎从来不会被遗漏. 存储过程的移植确实很困难,一般业务逻辑复杂到需要写存储过程的地步,总会不可避免地用到数据库独有的特性和语法,更换数据库时这部分代码就需要重写.如果只是简单地替换函数名和参数规则(如日期转换等),那成本还不高:如果用到了新数据库不支持的某种特性(如窗口函数),那还要重新设计算法来编写计算逻辑:如果还要再兼顾性能因素,有时候就会是个不可能完成的任务了. 不过,还好,存储过程移植的情况并不频繁. 多年前数据库市场还处于

【数据蒋堂】第3期:功夫都在报表外-漫谈报表性能优化

应用系统中的报表,作为面向业务用户的窗口,其性能一直被高度关注.用户输入参数后都希望立即就能看到统计查询结果,等个十几二十秒还能接受,等到三五分钟的用户体验就非常恶劣了. 那么,报表为什么会慢,又应当从哪里入手进行性能调优呢? 数据准备 当前应用中的报表大都用报表工具开发,当报表响应太慢时,不明就里的用户就会把矛头指向使用报表工具的开发人员或者报表工具厂商.其实,大多数情况报表的慢只是个表现,背后的原因是数据准备太慢,在数据进入报表环节之前就已经慢了,这时再去优化报表开发或压迫报表工具并没有用处

【数据蒋堂】第21期:常规遍历语法

遍历可以说是最基本的集合运算了,比如求和.计数.寻找最大最小值等聚合运算,按条件过滤集合.根据集合成员生成另一个新集合,也都是遍历运算.集合化语法要求我们能用很短的语句(经常就只有一句,而不是若干语句构成的一段程序)来描述大部分遍历运算,这样我们需要考查遍历运算中可能出现的各种常见情况,并设计出合理自洽的语法规则. 我们从简单到复杂来考查遍历运算中的可能情况,并讨论SQL语法在这方面的表现. 1. 直接针对集合成员运算 比如计算集合成员的合计. 这是最简单的情况,采用普通的函数语法风格就可以,将

【数据蒋堂】第27期:非常规聚合

标准SQL中提供了五种最常用的聚合运算:SUM/COUNT/AVG/MIN/MAX.观察这几个运算,我们发现它们都可以看成是一个以集合为参数返回单值的函数,我们就先把这个共同点理解为聚合运算的定义,把集合变成单值,多个值变成一个值,也就是发生了"聚合",所以叫聚合运算. 那么很显然,有集合的时候就可以应用聚合运算了,所以SUM/COUNT这些运算可以针对一个数据表(记录集合)实施. 分组运算的结果是一批分组子集,那么每个子集上也可以应用聚合运算,这也就是SQL的分组运算了.其实针对全集