1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).
2. 物理化学
(1) 燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能.
(2) 流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\bex p=p(\rho,T,Z),\quad E=E(\rho,T,Z). \eex$$
3. 粘性热传导反应流体力学方程组
(1) 质量守恒方程 $$\bex \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$
(2) 动量守恒方程 $$\bex \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\otimes{\bf u})=\rho {\bf F}. \eex$$
(3) 能量守恒方程 $$\bex \cfrac{\p }{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\Div\sez{ \sex{\rho E+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P}{\bf u} }=\Div(\kappa\n T)+\rho {\bf F}\cdot{\bf u}. \eex$$
(4) 未燃例题的质量守恒 $$\bex \cfrac{\p}{\p t}(\rho Z)+\Div(\rho Z{\bf u})=-\bar k(\rho,p,Z)\rho Z, \eex$$ 其中 $\bar k$ 表示反应率.