Java和Android的LRU缓存及实现原理

一、概述

Android提供了LRUCache类,可以方便的使用它来实现LRU算法的缓存。Java提供了LinkedHashMap,可以用该类很方便的实现LRU算法,Java的LRULinkedHashMap就是直接继承了LinkedHashMap,进行了极少的改动后就可以实现LRU算法。

二、Java的LRU算法

Java的LRU算法的基础是LinkedHashMap,LinkedHashMap继承了HashMap,并且在HashMap的基础上进行了一定的改动,以实现LRU算法。

1、HashMap

首先需要说明的是,HashMap将每一个节点信息存储在Entry<K,V>结构中。Entry<K,V>中存储了节点对应的key、value、hash信息,同时存储了当前节点的下一个节点的引用。因此Entry<K,V>是一个单向链表。HashMap的存储结构是一个数组加单向链表的形式。每一个key对应的hashCode,在HashMap的数组中都可以找到一个位置;而如果多个key对应了相同的hashCode,那么他们在数组中对应在相同的位置上,这时,HashMap将把对应的信息放到Entry<K,V>中,并使用链表连接这些Entry<K,V>。

static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap<K,V> m) { } }

下面贴一下HashMap的put方法的代码,并进行分析

public V put(K key, V value) { if (table == EMPTY_TABLE) { inflateTable(threshold); } if (key == null) return putForNullKey(value);      //以上信息不关心,下面是正常的插入逻辑。      //首先计算hashCode int hash = hash(key);      //通过计算得到的hashCode,计算出hashCode在数组中的位置 int i = indexFor(hash, table.length);      //for循环,找到在HashMap中是否存在一个节点,对应的key与传入的key完全一致。如果存在,说明用户想要替换该key对应的value值,因此直接替换value即可返回。 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } }      //逻辑执行到此处,说明HashMap中不存在完全一致的kye.调用addEntry,新建一个节点保存key、value信息,并增加到HashMap中 modCount++; addEntry(hash, key, value, i); return null; }

  在上面的代码中增加了一些注释,可以对整体有一个了解。下面具体对一些值得分析的点进行说明。

<1> int i = indexFor(hash, table.length);

可以看一下源码:

 static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1); }

 为什么获得的hashCode(h)要和(length-1)进行按位与运算?这是为了保证去除掉h的高位信息。如果数组大小为8(1000),而计算出的h的值为10(1010),如果直接获取数组的index为10的数据,肯定会抛出数组超出界限异常。所以使用按位与(0111&1010),成功清除掉高位信息,得到2(0010),表示对应数组中index为2的数据。效果与取余相同,但是位运算的效率明显更高。

但是这样有一个问题,如果length为9,获取得length-1信息为8(1000),这样进行位运算,不但不能清除高位数据,得到的结果肯定不对。所以数组的大小一定有什么特别的地方。通过查看源码,可以发现,HashMap无时无刻不在保证对应的数组个数为2的n次方。

首先在put的时候,调用inflateTable方法。重点在于roundUpToPowerOf2方法,虽然它的内容包含大量的位相关的运算和处理,没有看的很明白,但是注释已经明确了,会保证数组的个数为2的n次方。

private void inflateTable(int toSize) { // Find a power of 2 >= toSize int capacity = roundUpToPowerOf2(toSize); threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); table = new Entry[capacity]; initHashSeedAsNeeded(capacity); }

其次,在addEntry等其他位置,也会使用(2 * table.length)、table.length << 1等方式,保证数组的个数为2的n次方。

<2> for (Entry<K,V> e = table[i]; e != null; e = e.next)

因为HashMap使用的是数组加链表的形式,所以通过hashCode获取到在数组中的位置后,得到的不是一个Entry<K,V>,而是一个Entry<K,V>的链表,一定要循环链表,获取key对应的value。

<3> addEntry(hash, key, value, i);

先判断数组个数是否超出阈值,如果超过,需要增加数组个数。然后会新建一个Entry,并加到数组中。

/** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; }

2、LinkedHashMap

LinkedHashMap在HashMap的基础上,进行了修改。首先将Entry由单向链表改成双向链表。增加了before和after两个队Entry的引用。

private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); } /** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } } void recordRemoval(HashMap<K,V> m) { remove(); } }

同时,LinkedHashMap提供了一个对Entry的引用header(private transient Entry<K,V> header)。header的作用就是永远只是HashMap中所有成员的头(header.after)和尾(header.before)。这样把HashMap本身的数组加链表的格式进行了修改。在LinkedHashMap中,即保留了HashMap的数组加链表的数据保存格式,同时增加了一套header作为开始标记的双向链表(我们暂且称之为header的双向链表)。LinkedHashMap就是通过header的双向链表来实现LRU算法的。header.after永远指向最近最不常使用的那个节点,删除的话,就是删除这个header.after对应的节点。相对的,header.before指向的就是刚刚使用过的那个节点。

LinkedHashMap并没有提供put方法,但是LinkedHashMap重写了addEntry和createEntry方法,如下:

/** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { super.addEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } } /** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; }

HashMap的put方法,调用了addEntry方法;HashMap的addEntry方法又调用了createEntry方法。因此可以把上面的两个方法和HashMap中的内容放到一起,方便分析,形成如下方法:

 void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } }

 同样,先判断是否超出阈值,超出则增加数组的个数。然后创建Entry对象,并加入到HashMap对应的数组和链表中。与HashMap不同的是LinkedHashMap增加了e.addBefore(header);和removeEntryForKey(eldest.key);这样两个操作。

首先分析一下e.addBefore(header)。其中e是LinkedHashMap.Entry对象,addBefore代码如下,作用就是讲header与当前对象相关联,使当前对象增加到header的双向链表的尾部(header.before):

  private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; }

  其次是另一个重点,代码如下:

// Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); }

其中,removeEldestEntry判断是否需要删除最近最不常使用的那个节点。LinkedHashMap中的removeEldestEntry(eldest)方法永远返回false,如果我们要实现LRU算法,就需要重写这个方法,判断在什么情况下,删除最近最不常使用的节点。removeEntryForKey的作用就是将key对应的节点在HashMap的数组加链表结构中删除,源码如下:

 final Entry<K,V> removeEntryForKey(Object key) { if (size == 0) { return null; } int hash = (key == null) ? 0 : hash(key); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; }

 removeEntryForKey是HashMap的方法,对LinkedHashMap中header的双向链表无能为力,而LinkedHashMap又没有重写这个方法,那header的双向链表要如何处理呢。

仔细看一下代码,可以看到在成功删除了HashMap中的节点后,调用了e.recordRemoval(this);方法。这个方法在HashMap中为空,LinkedHashMap的Entry则实现了这个方法。其中remove()方法中的两行代码为双向链表中删除当前节点的标准代码,不解释。

/** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; }void recordRemoval(HashMap<K,V> m) { remove(); }

以上,LinkedHashMap增加节点的代码分析完毕,可以看到完美的将新增的节点放在了header双向链表的末尾。

但是,这样显然是先进先出的算法,而不是最近最不常使用算法。需要在get的时候,更新header双向链表,把刚刚get的节点放到header双向链表的末尾。我们来看看get的源码:

public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); if (e == null) return null; e.recordAccess(this); return e.value; }

  代码很短,第一行的getEntry调用的是HashMap的getEntry方法,不需要解释。真正处理header双向链表的代码是e.recordAccess(this)。看一下代码:

   /** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } }

  首先在header双向链表中删除当前节点,再将当前节点添加到header双向链表的末尾。当然,在调用LinkedHashMap的时候,需要将accessOrder设置为true,否则就是FIFO算法。

三、Android的LRU算法

Android同样提供了HashMap和LinkedHashMap,而且总体思路有些类似,但是实现的细节明显不同。而且Android提供的LruCache虽然使用了LinkedHashMap,但是实现的思路并不一样。Java需要重写removeEldestEntry来判断是否删除节点;而Android需要重写LruCache的sizeOf,返回当前节点的大小,Android会根据这个大小判断是否超出了限制,进行调用trimToSize方法清除多余的节点。

Android的sizeOf方法默认返回1,默认的方式是判断HashMap中的数据个数是否超出了设置的阈值。也可以重写sizeOf方法,返回当前节点的大小。Android的safeSizeOf会调用sizeOf方法,其他判断阈值的方法会调用safeSizeOf方法,进行加减操作并判断阈值。进而判断是否需要清除节点。

Java的removeEldestEntry方法,也可以达到同样的效果。Java需要使用者自己提供整个判断的过程,两者思路还是有些区别的。

sizeOf,safeSizeOf不需要说明,而put和get方法,虽然和Java的实现方式不完全一样,但是思路是相同的,也不需要分析。在LruCache中put方法的最后,会调用trimToSize方法,这个方法用于清除超出的节点。它的代码如下:

 public void trimToSize(int maxSize) { while (true) { Object key; Object value; synchronized (this) { if ((this.size < 0) || ((this.map.isEmpty()) && (this.size != 0))) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); }       if (size <= maxSize) {         break;       } Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(); key = toEvict.getKey(); value = toEvict.getValue(); this.map.remove(key); this.size -= safeSizeOf(key, value); this.evictionCount += 1; } entryRemoved(true, key, value, null); } }

 重点需要说明的是Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行代码。它前面的代码判断是否需要删除最近最不常使用的节点,后面的代码用于删除具体的节点。这行代码用于获取最近最不常使用的节点。

首先需要说明的问题是,Android的LinkedHashMap和Java的LinkedHashMap在思路上一样,也是使用header保存双向链表。在put和get的时候,会更新对应的节点,保存header.after指向最久没有使用的节点;header.before用于指向刚刚使用过的节点。所以Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行最终肯定是获取header.after节点。下面逐步分析代码,就可以看到是如何实现的了。

首先,map.entrySet(),HashMap定义了这个方法,LinkedHashMap没有重写这个方法。因此调用的是HashMap对应的方法:

public Set<Entry<K, V>> entrySet() { Set<Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); }

上面代码不需要细说,new一个EntrySet类的实例。而EntrySet也是在HashMap中定义,LinkedHashMap中没有。

private final class EntrySet extends AbstractSet<Entry<K, V>> { public Iterator<Entry<K, V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>) o; return containsMapping(e.getKey(), e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>)o; return removeMapping(e.getKey(), e.getValue()); } public int size() { return size; } public boolean isEmpty() { return size == 0; } public void clear() { HashMap.this.clear(); } }   Iterator<Entry<K, V>> newEntryIterator() { return new EntryIterator(); }

代码中很明显的可以看出,Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(),就是要调用

newEntryIterator().next(),就是调用(new EntryIterator()).next()。而EntryIterator类在LinkedHashMap中是有定义的。

  private final class EntryIterator extends LinkedHashIterator<Map.Entry<K, V>> { public final Map.Entry<K, V> next() { return nextEntry(); } } private abstract class LinkedHashIterator<T> implements Iterator<T> { LinkedEntry<K, V> next = header.nxt; LinkedEntry<K, V> lastReturned = null; int expectedModCount = modCount; public final boolean hasNext() { return next != header; } final LinkedEntry<K, V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); LinkedEntry<K, V> e = next; if (e == header) throw new NoSuchElementException(); next = e.nxt; return lastReturned = e; } public final void remove() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (lastReturned == null) throw new IllegalStateException(); LinkedHashMap.this.remove(lastReturned.key); lastReturned = null; expectedModCount = modCount; } }

现在可以得到结论,trimToSize中的那行代码得到的就是header.next对应的节点,也就是最近最不常使用的那个节点。

以上就是对Android Java LRU缓存的实现原理做的详解,后续继续补充相关资料,谢谢大家对本站的支持!

时间: 2024-10-27 19:23:07

Java和Android的LRU缓存及实现原理的相关文章

Java和Android的LRU缓存及实现原理_Android

一.概述 Android提供了LRUCache类,可以方便的使用它来实现LRU算法的缓存.Java提供了LinkedHashMap,可以用该类很方便的实现LRU算法,Java的LRULinkedHashMap就是直接继承了LinkedHashMap,进行了极少的改动后就可以实现LRU算法. 二.Java的LRU算法 Java的LRU算法的基础是LinkedHashMap,LinkedHashMap继承了HashMap,并且在HashMap的基础上进行了一定的改动,以实现LRU算法. 1.Hash

Java 实现 LRU 缓存的两个实例

Java 自定义实现 LRU 缓存算法 LinkedHashMap继承自HashMap,内部提供了一个removeEldestEntry方法,该方法正是实现LRU策略的关键所在,且HashMap内部专门为LinkedHashMap提供了3个专用回调方法,afterNodeAccess.afterNodeInsertion.afterNodeRemoval,这3个方法的字面意思非常容易理解,就是节点访问后.节点插入后.节点删除后分别执行的行为.基于以上行为LinkedHashMap就可以实现一个L

Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公

最新内容建议直接访问原文: Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公共类) 总结的一些android公共库,包含缓存(图片缓存.预取缓存).公共View(下拉及底部加载更多ListView.底部加载更多ScrollView.滑动一页Gallery).及工具类(下载管理.静默安装.shell工具类等等). 具体使用可见总结的一些android公共库.Demo APK地址见TrineaAndroidDemo,主要包括: 一. 缓存类 主要特

Android开发中内存缓存LruCache实现原理及实例应用

先分析内存缓存是如何实现的,开始进入正题. BitmapUtils内存缓存的核心类LruMemoryCache,LruMemoryCache代码和v4包的LruCache一样,只是加了一个存储超期的处理,这里分析LruCache源码.LRU即Least Recently Used,近期最少使用算法.也就是当内存缓存达到设定的最大值时将内存缓存中近期最少使用的对象移除,有效的避免了OOM的出现. 讲到LruCache不得不提一下LinkedHashMap,因为LruCache中Lru算法的实现就是

Android WebView的缓存

 各位读者大家好,最近比较忙好久没有写blog了,今天挤点时间和大家分享一下Android中WebView的缓存.我们在项目中也时常会用到 WebView这个控件,当我们加载html时候,会在我们data/应用package下生成database与cache两个文件夹如下图如示: 我们请求的url记录是保存在webviewCache.db里,而url的内容是保存在webviewCache文件夹下. 为了让大家更容易理解,我做一个简单的例子,我定义一个html文件,在里面加载了一个淘宝的衣服图片的

Android图片三级缓存策略(网络、本地、内存缓存)_Android

一.简介 现在的Android应用程序中,不可避免的都会使用到图片,如果每次加载图片的时候都要从网络重新拉取,这样不但很耗费用户的流量,而且图片加载的也会很慢,用户体验很不好.所以一个应用的图片缓存策略是很重要的.通常情况下,Android应用程序中图片的缓存策略采用"内存-本地-网络"三级缓存策略,首先应用程序访问网络拉取图片,分别将加载的图片保存在本地SD卡中和内存中,当程序再一次需要加载图片的时候,先判断内存中是否有缓存,有则直接从内存中拉取,否则查看本地SD卡中是否有缓存,SD

Android编程使用缓存优化ListView的方法_Android

本文实例讲述了Android编程使用缓存优化ListView的方法.分享给大家供大家参考,具体如下: ListView调用Adapter的getView方法获取每一个Item布局,将这些已经获得的Item布局放入缓存,将大大提高获取数据的效率,而且节省更多的流量,将数据进行缓存有两种方法是,一种是将内存缓存一种是sd卡缓存,在此分别进行演示. sd卡缓存: sd卡缓存是将下载的数据保存到sd卡中,当再次要获取数据时,首先要判断sd卡中是否存在,如果存在的话,就直接读取sd卡中的数据,如果不存在就

Android基于SoftReference缓存图片的方法_Android

本文实例讲述了Android基于SoftReference缓存图片的方法.分享给大家供大家参考,具体如下: Java中的SoftReference即对象的软引用.如果一个对象具有软引用,内存空间足够,垃圾回收器就不会回收它:如果内存空间不足了,就会回收这些对象的内存.只要垃圾回收器没有回收它,该对象就可以被程序使用.软引用可用来实现内存敏感的高速缓存.使用软引用能防止内存泄露,增强程序的健壮性. SoftReference的特点是它的一个实例保存对一个Java对象的软引用,该软引用的存在不妨碍垃

毕加索的艺术——Picasso,一个强大的Android图片下载缓存库,OkHttpUtils的使用,二次封装PicassoUtils实现微信精选

毕加索的艺术--Picasso,一个强大的Android图片下载缓存库,OkHttpUtils的使用,二次封装PicassoUtils实现微信精选 官网: http://square.github.io/picasso/ 我们在上篇OkHttp的时候说过这个Picasso,学名毕加索,是Square公司开源的一个Android图形缓存库,而且使用起来也是非常的简单,只要一行代码就轻松搞定了,你会问,为什么不介绍一下Glide?其实Glide我有时间也是会介绍的,刚好上篇我们用到了Picasso,