缓存淘汰算法系列之3——FIFO类

缓存淘汰算法系列之3——FIFO类

1 FIFO

1.1. 原理

按照“先进先出(First In,First Out)”的原理淘汰数据。

1.2. 实现

FIFO队列,具体实现如下:

1. 新访问的数据插入FIFO队列尾部,数据在FIFO队列中顺序移动;

2. 淘汰FIFO队列头部的数据;

1.3. 分析

l 命中率

命中率很低,因为命中率太低,实际应用中基本上不会采用。

l 复杂度

简单

l 代价

实现代价很小。

2. Second Chance

2.1. 原理

FIFO算法的改进版,其思想是“如果被淘汰的数据之前被访问过,则给其第二次机会(Second Chance)”。

2.2. 实现

每个数据会增加一个访问标志位,用于标识此数据放入缓存队列后是否被再次访问过。

如上图,A是FIFO队列中最旧的数据,且其放入队列后没有被再次访问,则A被立刻淘汰;否则如果放入队列后被访问过,则将A移到FIFO队列头,并且将访问标志位清除。

如果所有的数据都被访问过,则经过一次循环后就会按照FIFO的原则淘汰数据。

2.3. 分析

l 命中率

命中率比FIFO高。

l 复杂度

与FIFO相比,需要记录数据的访问标志位,且需要将数据移动。

l 代价

实现代价比FIFO高。

3. Clock

3.1. 原理

Clock是Second Chance的改进版,通过一个环形队列,避免将数据在FIFO队列中移动。

3.2. 实现

如上图,其具体实现如下:

l 当前指针指向C,如果C被访问过,则清除C的访问标志,并将指针指向D;

l 如果C没有被访问过,则将新数据插入到C的位置,将指针指向D。

3.3. 分析

l 命中率

命中率比FIFO高,和Second Chance一样。

l 复杂度

与FIFO相比,需要记录数据的访问标志位,且需要将数据指针移动。

l 代价

实现代价比FIFO高,比Second Chance低。

4. FIFO类算法对比


对比点


对比


命中率


Clock =  Second Chance > FIFO


复杂度


Second Chance  > Clock > FIFO


代价


Second Chance  > Clock > FIFO

由于FIFO类算法命中率相比其他算法要低不少,因此实际应用中很少使用此类算法。

时间: 2024-09-08 08:36:14

缓存淘汰算法系列之3——FIFO类的相关文章

缓存淘汰算法系列之2——LFU类

1. LFU类 1.1. LFU 1.1.1. 原理 LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是"如果数据过去被访问多次,那么将来被访问的频率也更高". 1.1.2. 实现 LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序. 具体实现如下: 1. 新加入数据插入到队列尾部(因为引用计数为1): 2. 队列中的数据被访问后,引用计数增加,队列重新排序: 3. 当需要淘汰数据时

缓存淘汰算法--LRU算法

[本文转载于缓存淘汰算法--LRU算法] 1. LRU 1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当

[算法系列之二十三]线段树(Interval Tree)

一 背景 在信息学竞赛中,我们经常会碰到一些跟区间有关的问题,比如给一些区 间线段求并区间的长度,或者并区间的个数等等.这些问题的描述都非常简单,但是通常情况下数据范围会非常大,而朴素方法的时间复杂度过高,导致不能在规定时间内得到问题的解.这时,我们需要一种高效的数据结构来处理这样的问题,在本文中,我们介绍一种基于分治思想的数据结构--线段树. 二 简介 线段树是一种二叉树形结构,属于平衡树的一种.它将线段区间组织成树形的结构,并用每个节点来表示一条线段.一棵[1,10)的线段树的结构如图1.1

闲话缓存:算法

从前面的文章中,我们已经了解到了缓存设计的目标,缓存设计应该考虑的因素.今天我们来看看一系列缓存算法以及它们如何去解决问题的.同时,我们也会涉及到各种缓存算法的优缺点. 这里我并不想讨论与预取(pre-fetch)相关的算法,主要是考虑各种淘汰算法.因为相比于预取算法,淘汰算法具有更大的通用性,对缓存好坏影响更大. 1.      时间(完全从最近使用的时间角度考虑) a.      LRU(least recently used):这种策略就是永远替换掉最近最少使用的缓存单元.它是最古老,应用

算法系列(二十) 计算中国农历(二)

所谓的"天文算法",就是利用经典力学定律推导行星运转轨道,对任意时刻的行星位置进行精确计 算,从而获得某种天文现象发生时的时间,比如日月合朔这一天文现象就是太阳和月亮的地心黄经(视黄 经)差为0的那一瞬间.能够计算任意时刻行星位置的一套理论就被称为星历表,比较著名的星历表有美 国国家航空航天局下属的喷气推进实验室发布的DE系列星历表,还有瑞士天文台在DE406基础上拓展的瑞 士星历表等等.根据行星运行轨道直接计算行星位置通常不是很方便,更何况大多数民用天文计算用不上 那么多精确的轨道参

算法系列(十九) 用天文方法计算日月合朔(新月)

中国农历的朔望月是农历历法的基础,而朔望月又是严格以日月合朔发生的那一天作为月首,因此日 月合朔时间的计算是制定农历历法的关键.本文将介绍ELP-2000/82月球运行理论,以及如何用ELP- 2000/82月球运行理论计算日月合朔时间. 要计算日月合朔时间, 首先要对日月合朔这一天文现象进行数学定义.朔望月是在地球上观察到的月相周期,平均长度约等于 29.53059日,而恒星月(天文月)是月亮绕地球公转一周的时间,长度约27.32166日.月相周期长度比恒 星月长大约两天,这是因为在月球绕地球

算法系列(十四) 狼、羊、菜和农夫过河问题

题目描述:农夫需要把狼.羊.菜和自己运到河对岸去,只有农夫能够划船,而且船比较小,除农 夫之外每次只能运一种东西,还有一个棘手问题,就是如果没有农夫看着,羊会偷吃菜,狼会吃羊. 请考虑一种方法,让农夫能够安全地安排这些东西和他自己过河. 这个题目考察人的快速逻辑运算和短期记忆力.分析一下,在狼->羊->菜这个食物链条中 ,"羊"处在关键位置,解决问题的指导思想就是将"羊"与"狼"和"菜"始终处于隔离状态,也 就是说

算法系列(十二) 多边形区域填充算法:几种边标志填充算法

四.边界标志填充算法 在光栅显示平面上,多边形是封闭的,它是用某一边界色围成的一 个闭合区域,填充是逐行进行的,即用扫描线逐行对多边形求交,在交点对之间填充.边界标志填充 算法就是在逐行处理时,利用边界或边界颜色作为标志来进行填充的.准确地说,边界标志填充算法 不是指某种具体的填充算法,而是一类利用扫描线连贯性思想的填充算法的总称.这类算法有很多种 ,本篇就介绍几种. 首先介绍一种以边为中心的边缘填充算法,这种边界标志算法的基本思想 是:对于每一条扫描线和每一条多边形边的交点(xi,yi),将该

数据结构与算法系列(2)基础排序算法

前言 在计算机中实现存储数据最普遍的两种操作就是排序和查找.这是从计算机产业初始就已经确认的 了.这意味着排序和查找也是计算机科学领域最值得研究的两种操作.本书提到的许 多数据结构的主要设计目的就是为了使排序和/或查找更加简单,同时也是为了数据在结构内的存 储更加有效. 本章会介绍有关数据排序和查找的基础算法.这些算法仅依赖数组作为数据结构,而且所采用的 "高级"编程技术只是递归.本章还介绍了用来非正式分析不同算法之间速度与效率的方 法,此方法贯穿全书. 1.排序算法 人们在日常生活中