C# 实现常用的算法-- 堆排序

排序|算法

5. 堆排序

  5.1. 基本思想:

  堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

  5.2. 堆的定义:

  N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])。

  堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。

  5.3. 排序过程:

  堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。

  【示例】:对关键字序列42,13,91,23,24,16,05,88建堆。

 
 

  5.4. 程序实现

/// <summary>
/// 小根堆排序
/// </summary>
/// <param name="dblArray"></param>
/// <param name="StartIndex"></param>
/// <returns></returns>

private static void HeapSort(ref double[] dblArray )
{
 for(int i = dblArray.Length -1 ; i >= 0; i--)
 {
  if(2*i+1<dblArray.Length)
  {
   int MinChildrenIndex = 2*i+1 ;
   //比较左子树和右子树,记录最小值的Index
   if(2*i+2 < dblArray.Length )
   {
    if(dblArray[2*i+1]>dblArray[2*i+2])
     MinChildrenIndex = 2*i+2;
   }
   if(dblArray[i] > dblArray[MinChildrenIndex])
   {
    ExchageValue(ref dblArray[i],ref dblArray[MinChildrenIndex]);
    NodeSort(ref dblArray ,MinChildrenIndex);
   }
  }
 }
}

/// <summary>
/// 节点排序
/// </summary>
/// <param name="dblArray"></param>
/// <param name="StartIndex"></param>

private static void NodeSort(ref double[] dblArray,int StartIndex)
{
 while(2*StartIndex+1 < dblArray.Length)
 {
  int MinChildrenIndex = 2*StartIndex+1 ;
  if(2*StartIndex+2 < dblArray.Length )
  {
   if(dblArray[2*StartIndex+1]>dblArray[2*StartIndex+2])
   {
    MinChildrenIndex = 2*StartIndex+2;
   }
  }
  if(dblArray[StartIndex] > dblArray[MinChildrenIndex])
  {
   ExchageValue(ref dblArray[StartIndex],ref dblArray[MinChildrenIndex]);
   StartIndex = MinChildrenIndex ;
  }
 }
}

/// <summary>
/// 交换值
/// </summary>
/// <param name="A"></param>
/// <param name="B"></param>

private static void ExchageValue(ref double A , ref double B)
{
 double Temp = A ;
 A = B ;
 B = Temp ;
}

时间: 2024-09-02 06:50:16

C# 实现常用的算法-- 堆排序的相关文章

视觉直观感受 7 种常用排序算法

10月14日发布<统计世界的十大算法>后,很多朋友在后台询问,哪里有"视觉直观感受 7 种常用排序算法",今天分享给大家,感谢todayx.org. 1. 快速排序 介绍: 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序 n 个项目要Ο(n log n)次比较.在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见.事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,

常用排序算法比较与分析

 一.常用排序算法简述 下面主要从排序算法的基本概念.原理出发,分别从算法的时间复杂度.空间复杂度.算法的稳定性和速度等方面进行分析比较.依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:[内排序].[外排序]. 内排序:指排序时数据元素全部存放在计算机的随机存储器RAM中. 外排序:待排序记录的数量很大,以致内存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程. 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见

Java常用排序算法及性能测试集合_java

现在再回过头理解,结合自己的体会, 选用最佳的方式描述这些算法,以方便理解它们的工作原理和程序设计技巧.本文适合做java面试准备的材料阅读. 先附上一个测试报告: Array length: 20000bubbleSort : 766 msbubbleSortAdvanced : 662 msbubbleSortAdvanced2 : 647 msselectSort : 252 msinsertSort : 218 msinsertSortAdvanced : 127 msinsertSor

JavaScript中九种常用排序算法_javascript技巧

笔试面试经常涉及各种算法,本文简要介绍常用的一些算法,并用JavaScript实现. 一.插入排序  1)算法简介 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入.插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间. 2)算法描述和实现 一般来说,插入排序都

常用的算法思想总结

对于计算机科学而言,算法是一个非常重要的概念.它是程序设计的灵魂,是将实际问题同解决该问题的计算机程序建立起联系的桥梁.接下来,我们来看看一些常用的算法思想. (一)穷举法思想 穷举法,又称为强力法.它是一种最为直接,实现最为简单,同时又最为耗时的一种解决实际问题的算法思想. 基本思想:在可能的解空间中穷举出每一种可能的解,并对每一个可能解进行判断,从中得到问题的答案. 使用穷举法思想解决实际问题,最关键的步骤是划定问题的解空间,并在该解空间中一一枚举每一个可能的解.这里有两点需要注意,一是解空

js实现常用排序算法_javascript技巧

本文为大家分享了js实现常用排序算法,具体内容如下 1.冒泡排序 var bubbleSort = function (arr) { var flag = true; var len = arr.length; for (var i = 0; i < len - 1; i++) { flag = true; for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j + 1]) { var temp = arr[j+1]; arr

常用Hash算法(C语言的简单实现)_C 语言

如下所示: #include "GeneralHashFunctions.h" unsigned int RSHash(char* str, unsigned int len) { unsigned int b = 378551; unsigned int a = 63689; unsigned int hash = 0; unsigned int i = 0; for(i = 0; i < len; str++, i++) { hash = hash * a + (*str);

javascript常用经典算法实例详解_javascript技巧

本文实例讲述了javascript常用算法.分享给大家供大家参考,具体如下: 入门级算法-线性查找-时间复杂度O(n)--相当于算法界中的HelloWorld //线性搜索(入门HelloWorld) //A为数组,x为要搜索的值 function linearSearch(A, x) { for (var i = 0; i < A.length; i++) { if (A[i] == x) { return i; } } return -1; } 二分查找(又称折半查找) - 适用于已排好序的

常用分词算法的比较与设想

与基于理解的分词算法和基于统计的分词算法相比,基于文本匹配的算法更 加通用.基于文本匹配的算法又称之为"机械分词算法",他是它是按照一定的 策略将待分析的汉字串与一个"充分大的"机器词典中的词条进行配,若在词典 中找到某个字符串,则匹配成功,可识别出一个词.按照扫描方向的不同,文本 匹配分词方法可以分为正向匹配和逆向匹配两种:按照不同长度优先匹配的情况 ,可以分为最大(最长)匹配和最小(最短)匹配:按照是否与词性标注过程相 结合,又可以分为单纯分词方法和分词与标注相