贝叶斯推断及其互联网应用(二):过滤垃圾邮件

上一次,我介绍了贝叶斯推断的原理,今天讲如何将它用于垃圾邮件过滤。

========================================

贝叶斯推断及其互联网应用

作者:阮一峰


(接上文)

七、什么是贝叶斯过滤器?

垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。

正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。

另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。

八、建立历史资料库

贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。

我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。

"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)

有了这个初步的统计结果,过滤器就可以投入使用了。

九、贝叶斯过滤器的使用过程

现在,我们收到了一封新邮件。在未经统计分析之前,我们假定它是垃圾邮件的概率为50%。(【注释】有研究表明,用户收到的电子邮件中,80%是垃圾邮件。但是,这里仍然假定垃圾邮件的"先验概率"为50%。)

我们用S表示垃圾邮件(spam),H表示正常邮件(healthy)。因此,P(S)和P(H)的先验概率,都是50%。


然后,对这封邮件进行解析,发现其中包含了sex这个词,请问这封邮件属于垃圾邮件的概率有多高?

我们用W表示"sex"这个词,那么问题就变成了如何计算P(S|W)的值,即在某个词语(W)已经存在的条件下,垃圾邮件(S)的概率有多大。

根据条件概率公式,马上可以写出


公式中,P(W|S)和P(W|H)的含义是,这个词语在垃圾邮件和正常邮件中,分别出现的概率。这两个值可以从历史资料库中得到,对sex这个词来说,上文假定它们分别等于5%和0.05%。另外,P(S)和P(H)的值,前面说过都等于50%。所以,马上可以计算P(S|W)的值:


因此,这封新邮件是垃圾邮件的概率等于99%。这说明,sex这个词的推断能力很强,将50%的"先验概率"一下子提高到了99%的"后验概率"。

十、联合概率的计算

做完上面一步,请问我们能否得出结论,这封新邮件就是垃圾邮件?

回答是不能。因为一封邮件包含很多词语,一些词语(比如sex)说这是垃圾邮件,另一些说这不是。你怎么知道以哪个词为准?

Paul Graham的做法是,选出这封信中P(S|W)最高的15个词,计算它们的联合概率。(【注释】如果有的词是第一次出现,无法计算P(S|W),Paul Graham就假定这个值等于0.4。因为垃圾邮件用的往往都是某些固定的词语,所以如果你从来没见过某个词,它多半是一个正常的词。)

所谓联合概率,就是指在多个事件发生的情况下,另一个事件发生概率有多大。比如,已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。

在已知W1和W2的情况下,无非就是两种结果:垃圾邮件(事件E1)或正常邮件(事件E2)。


其中,W1、W2和垃圾邮件的概率分别如下:


如果假定所有事件都是独立事件(【注释】严格地说,这个假定不成立,但是这里可以忽略),那么就可以计算P(E1)和P(E2):


又由于在W1和W2已经发生的情况下,垃圾邮件的概率等于下面的式子:

将P(S)等于0.5代入,得到

将P(S|W1)记为P1,P(S|W2)记为P2,公式就变成

这就是联合概率的计算公式。如果你不是很理解,点击这里查看更多的解释。

十一、最终的计算公式

将上面的公式扩展到15个词的情况,就得到了最终的概率计算公式:

一封邮件是不是垃圾邮件,就用这个式子进行计算。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,表示15个词联合认定,这封邮件有90%以上的可能属于垃圾邮件;概率小于0.9,就表示是正常邮件。

有了这个公式以后,一封正常的信件即使出现sex这个词,也不会被认定为垃圾邮件了。

(完)

时间: 2024-09-29 03:16:48

贝叶斯推断及其互联网应用(二):过滤垃圾邮件的相关文章

贝叶斯推断及其互联网应用(二)过滤垃圾邮件

上一次,我介绍了贝叶斯推断的原理,今天讲如何将它用于垃圾邮件过滤. ======================================== 贝叶斯推断及其互联网应用 作者:阮一峰 (接上文) 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比.它们的

贝叶斯推断及其互联网应用(一):定理简介

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版). 我没完全看懂那一章.当时是硬着头皮,按照字面意思把它译出来的.虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难.原理的部分相当容易理解,不需要用到高等数学. 下面就是我的学习笔记.需要声明的是,我并不是这方面的专家,数学其实是我的弱项.欢迎大家提出宝贵意见,让我们

贝叶斯推断及其互联网应用(一)定理简介

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版). 我没完全看懂那一章.当时是硬着头皮,按照字面意思把它译出来的.虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难.原理的部分相当容易理解,不需要用到高等数学. 下面就是我的学习笔记.需要声明的是,我并不是这方面的专家,数学其实是我的弱项.欢迎大家提出宝贵意见,让我们

贝叶斯推断及其互联网应用(三):拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分.) 使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法. 比如,你不小心输入了seperate. Google告诉你,这个词是不存在的,正确的拼法是separate. 这就叫做"拼写检查"(spelling corrector).有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法.这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上).

贝叶斯推断及其互联网应用(三)拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分.) 使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法. 比如,你不小心输入了seperate. Google告诉你,这个词是不存在的,正确的拼法是separate. 这就叫做"拼写检查"(spelling corrector).有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法.这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上).

浅谈贝叶斯推断

一.什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质.它是贝叶斯定理(Bayes' theorem)的应用.英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理. 贝叶斯推断与其他统计学推断方法截然不同.它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正.正是因为它的主观性太强,曾经遭到许多统计学家的诟病. 贝叶斯推断需要大量的计算,因此历史

《贝叶斯方法:概率编程与贝叶斯推断》——导读

前言 贝叶斯方法:概率编程与贝叶斯推断 贝叶斯方法是一种常用的推断方法,然而对读者来说它通常隐藏在乏味的数学分析章节背后.关于贝叶斯推断的书通常包含两到三章关于概率论的内容,然后才会阐述什么是贝叶斯推断.不幸的是,由于大多数贝叶斯模型在数学上难以处理,这些书只会为读者展示简单.人造的例子.这会导致贝叶斯推断给读者留下"那又如何?"的印象.实际上,这曾是我自己的先验观点. 最近贝叶斯方法在一些机器学习竞赛上取得了成功,让我决定再次研究这一主题.然而即便以我的数学功底,我也花了整整3天时间

《贝叶斯方法:概率编程与贝叶斯推断》——第1章 贝叶斯推断的哲学 1.1 引言

第1章 贝叶斯推断的哲学 贝叶斯方法:概率编程与贝叶斯推断 1.1 引言 尽管你已是一个编程老手,但bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,你决定先来一个简单的测试用例.这个用例通过了.接着你用了一个稍微复杂的测试用例.再次通过了.接下来更难的测试用例也通过了.这时,你开始觉得也许这段代码已经没有bug了. 如果你这样想,那么恭喜你:你已经在用贝叶斯的方式思考!简单地说,贝叶斯推断是通过新得到的证据不断地更新你的信念.贝叶斯推断很少会做出绝对的判断,但可以做出非常可信的判

《贝叶斯方法:概率编程与贝叶斯推断》——1.1 引言

1.1 引言 尽管你已是一个编程老手,但bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,你决定先来一个简单的测试用例.这个用例通过了.接着你用了一个稍微复杂的测试用例.再次通过了.接下来更难的测试用例也通过了.这时,你开始觉得也许这段代码已经没有bug了. 如果你这样想,那么恭喜你:你已经在用贝叶斯的方式思考!简单地说,贝叶斯推断是通过新得到的证据不断地更新你的信念.贝叶斯推断很少会做出绝对的判断,但可以做出非常可信的判断.在上面的例子中,我们永远无法100%肯定我们的代码是无缺