HEVC代码追踪(六):compressCU

Void TEncCu::compressCU( TComDataCU*& rpcCU )
{
  // initialize CU data
  m_ppcBestCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() );
  m_ppcTempCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() );

  // analysis of CU
  xCompressCU( m_ppcBestCU[0], m_ppcTempCU[0], 0 );

#if ADAPTIVE_QP_SELECTION
  if( m_pcEncCfg->getUseAdaptQpSelect() )
  {
    if(rpcCU->getSlice()->getSliceType()!=I_SLICE) //IIII
    {
      xLcuCollectARLStats( rpcCU);
    }
  }
#endif
}
时间: 2024-08-02 14:15:57

HEVC代码追踪(六):compressCU的相关文章

HEVC代码追踪(十一。六):运动估计/补偿之xTZSearchHelp

/* 分析xTZSearch这个函数,xTZSearchHelp是当中最为重要的子函数之一.它实现最基本的功能:根据输入的搜索点坐标, 参考图像首地址,原始图像首地址,以及当前PU大小等相关信息,计算出SAD,并与之前保存的最佳值进行比较,更新到 目前为止的最佳值相关参数,如uiBestSad,搜索点坐标,搜索步长等.其他的函数如xTZ8PointSearch等搜索函数,最终 都是调用xTZSearchHelp进行误差匹配的. */ __inline Void TEncSearch::xTZSe

HEVC代码追踪(十一):运动估计/补偿之理论知识

运动估计的英文名称是Motion Estimation,是视频编码和视频处理(例如去交织)中广泛使用的一种技术. 运动估计的基本思想是将图像序列的每一帧分成许多互不重叠的宏块,并认为宏块内所有像素的位移量都相同,然后对每个宏块到参考帧某一给定特定搜索范围内根据一定的匹配准则找出与当前块最相似的块,即匹配块,匹配块与当前块的相对位移即为运动矢量.视频压缩的时候,只需保存运动矢量和残差数据就可以完全恢复出当前块. 在帧间预测编码中,由于活动图像邻近帧中的景物存在着一定的相关性.因此,可将活动图像分成

HEVC代码追踪(十三):解码之decode

// ==================================================================================================================== // Public member functions // ====================================================================================================

HEVC代码追踪(一):int main

int main(int argc, char* argv[]) { TAppEncTop cTAppEncTop; // print information fprintf( stdout, "\n" ); fprintf( stdout, "HM software: Encoder Version [%s]", NV_VERSION ); fprintf( stdout, NVM_ONOS ); fprintf( stdout, NVM_COMPILEDBY )

HEVC代码追踪(四。二)

/////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice // Slice compression if (m_pcCfg->getUseASR()) { m_pcSliceEncoder->setSearchRange(pcSlice); } Bool bGPBcheck=false; if ( pcSlice->

HEVC代码追踪(十四):解码之xDecodeSlice

Bool TDecTop::decode(InputNALUnit& nalu, Int& iSkipFrame, Int& iPOCLastDisplay) { // Initialize entropy decoder m_cEntropyDecoder.setEntropyDecoder (&m_cCavlcDecoder); m_cEntropyDecoder.setBitstream (nalu.m_Bitstream); switch (nalu.m_nalUn

HEVC代码追踪(四。一)

Bool IRAPtoReorder = false; #if EFFICIENT_FIELD_IRAP if(IRAPtoReorder) { if(swapIRAPForward) { if(iGOPid == IRAPGOPid) { iGOPid = IRAPGOPid +1; } else if(iGOPid == IRAPGOPid +1) { iGOPid = IRAPGOPid; } } else { if(iGOPid == IRAPGOPid -1) { iGOPid = I

HEVC代码追踪(四。三)

/* use the main bitstream buffer for storing the marshalled picture */ m_pcEntropyCoder->setBitstream(NULL); startCUAddrSliceIdx = 0; startCUAddrSlice = 0; startCUAddrSliceSegmentIdx = 0; startCUAddrSliceSegment = 0; nextCUAddr = 0; pcSlice = pcPic->

HEVC代码追踪(十二):解码之int main

int main(int argc, char* argv[]) { TAppDecTop cTAppDecTop; // print information fprintf( stdout, "\n" ); fprintf( stdout, "HM software: Decoder Version [%s]", NV_VERSION ); fprintf( stdout, NVM_ONOS ); fprintf( stdout, NVM_COMPILEDBY )