“一道算法题,看看大家的思路”,看了众多的回复,本人愚钝,没有看明白其中的奥妙。在细细研究《编程之美》中的文章后,终于理解了这个算法的思路。现将这个算法的演算过程以及代码实现(VB2005)赋予其后,和各位交流。
现再将题目复述一遍:
题目描述:有31,-41,59,26,-53,58,97,-93,-23,84十个数。SUM(N,M)表示从第N个数到到第M个数的和。例如:SUM(2,3)=-41+59=18。问:最大的和是多少?对应的N和M是多少?
先不管N和M的计算,直接计算SUM,看看用什么算法。
算法一:直接遍历穷举,求出SUM。代码如下:
Public Function MaxSum1() As Integer
Dim i As Integer, j As Integer, k As Integer, _
Sum As Integer, Maximum As Integer = Integer.MinValue
For i = 0 To A.GetUpperBound(0)
For j = i To A.GetUpperBound(0)
Sum = 0
For k = i To j
Sum += A(k)
If Sum > Maximum Then Maximum = Sum
Next
Next
Next
Return Maximum
End Function
这个代码最容易理解,但是效率最低,算法的复杂度为O(N3)
算法二,在算法一的基础上改进,因为SUM(N,M)=SUM(N,M-1)+A(M),基于这个原理,将上述代码中的最里面的一层循环去掉。
Public Function MaxSum2() As Integer
Dim i As Integer, j As Integer, Sum As Integer, _
Maximum As Integer = Integer.MinValue
For i = 0 To A.GetUpperBound(0)
Sum = 0
For j = i To A.GetUpperBound(0)
Sum += A(j)
If Sum > Maximum Then Maximum = Sum
Next
Next
Return Maximum
End Function
这个代码也很容易理解,算法执行效率有明显的提高,算法的复杂度为O(N2),但还不够。
算法三:
考虑数组第一个元素A(0)和最大和的一段数组A(N),……,A(M)。他们之间有如下关系:
1、当0=N=M时,元素A(0)本身构成最大和的一段
2、当0=N<M时,最大和的一段以A(0)开始
3、当0<N时,A(0)和最大和一段没有什么关系。
假设数组有N个元素,分别为A(0),A(1),……,A(N-1)
并且我还知道从A(1)到A(N-1)的最大和为All(1),从A(1)到A(N-1)中包含A(1)的最大和为Start(1)
那么,从A(0)到A(N-1)的最大和All(0)就一定有下面的关系式:
All(0)=Max{A(0),A(0)+Start(1),All(1)}
而Start(0)有如下的关系式:
Start(0)=Max{A(0),A(0)+Start(1)}
看了上面的分析,将N个元素的问题就转化为了N-1个元素的问题。这是我想到了递推。(书上以及很多其他的博客说是动态规划,我没有理解,个人比较愚钝)
将上面的式子整理一下,建立好递推关系:
Start(i)=Max{A(i),A(i)+Start(i+1)}
All(i)=Max{Start(i),All(i+1)}
代码如下:
Public Function Max(ByVal X As Integer, ByVal Y As Integer) As Integer
Return IIf(X > Y, X, Y)
End Function
Public Function MaxSum3() As Integer
Dim i As Integer, Start() As Integer, All() As Integer
ReDim Start(A.GetUpperBound(0))
ReDim All(A.GetUpperBound(0))
Start(A.GetUpperBound(0)) = A(A.GetUpperBound(0))
All(A.GetUpperBound(0)) = A(A.GetUpperBound(0))
For i = A.GetUpperBound(0) - 1 To 0 Step -1
Start(i) = Max(A(i), A(i) + Start(i + 1))
All(i) = Max(Start(i), All(i + 1))
Next
Return All(0)
End Function
这个算法的效率很高,算法复杂度为O(N),但是引用了两个数组。仔细观察两个数组的使用情况,发现其实只要使用两个变量就完全可以了,下面是改进的代码。
Public Function Max(ByVal X As Integer, ByVal Y As Integer) As Integer
Return IIf(X > Y, X, Y)
End Function
Public Function MaxSum4() As Integer
Dim i As Integer, Start As Integer, All As Integer
Start = A(A.GetUpperBound(0))
All = A(A.GetUpperBound(0))
For i = A.GetUpperBound(0) - 1 To 0 Step -1
Start = Max(A(i), A(i) + Start)
All = Max(Start, All)
Next
Return All
End Function
将上面的代码,仔细分析一下可以发现:
Start=Max(A(i),A(i)+Start)
可以改写为:
If Start<0 Then
Start=A(i)
Else
Start=A(i)+Start
End If
继而可以改写为
If Start<0 Then Start=0
Start=A(i)+Start
而All = Max(Start, All)可以改写为
If Start>All Then All=Start
故上面的代码,可以改写为一个函数,减少系统的开销
Public Function MaxSum5() As Integer
Dim i As Integer, Start As Integer, All As Integer
Start = A(A.GetUpperBound(0))
All = A(A.GetUpperBound(0))
For i = A.GetUpperBound(0) - 1 To 0 Step -1
If Start < 0 Then Start = 0
Start += A(i)
If Start > All Then All = Start
Next
Return All
End Function
至此,代码效率高,又简洁明了。唯一的缺憾是从数组的最后一个倒推,下面的代码改成正推
Public Function MaxSum6() As Integer
Dim i As Integer, Start As Integer, All As Integer
Start = A(0)
All = A(0)
For i = 1 To A.GetUpperBound(0)
If Start < 0 Then Start = 0
Start += A(i)
If Start > All Then All = Start
Next
Return All
End Function
以上的推导过程就是为了求出一个最大和,没有求出具体的下标。关于下标的计算,留待后文详述。
代码格式修正于2012年1月6日