小白学数据分析-----> 留存率是什么?(番外篇)

最近一个时期和很多的人进行了交流,收获了不少,也思考了不少,如今我们都能得到数据,如今我们也都能按照所谓的定义和框架分析问题,只是我觉得有时候不必要一定要一直站在框架内去分析一些问题,进步和前进的力量来自于质疑,并进行革新和再创造。

留存率这个数据指标不记得从何时起变得那么重要,重要到研发上把它作为游戏好坏的一个标准,运营商(平台)作为了一个准入的钥匙,是否值得继续下去。有时候觉得粗暴,甚至无知了有点。因为肤浅的百分比背后隐藏着更多的金子,也可能是垃圾。

以上算是一点吐槽,更多潜在的问题这里不想累述,前几日写过一个关于的留存率是什么的文章,我想肯定很多人看过了,估计也都会用了,今天写的番外篇将从这个数据的统计源头说起,换个角度来看待这个留存率的问题。

留存率VS百分比

百分比是用于表达比例的,类似于一种标准化的表达,因为百分比的分母是100,换个较多想想这种表达消除了数量级上的差异,使不同数量级之间的数据可以进行比较,比如:

这里我们看到尽管上周和本周的收入数据相差了一个数据量级,但是在百分比上的表现只是差了10个百分点,能够更好的进行量化数据,这个意义上,是非常有用的,然而这里如果只是对比本周的强化收入环比上周少了10个百分点就断言本周的强化道具卖的不好,那我们就错了。

那么下面我们再来审视这张图:

 

这张图我们发现的规律其实和上一张是一致的,如果我们只是在单纯的考察留存率,遇到的分析麻烦就是错误的相信了百分比,但是这里不能忽略百分比的作用。因此考察留存不是单纯的就在看留存率,你还要看到DAU,其后的留存,DNU规模等等信息。之所以要跟这个百分比较劲的原因其实很简单,你不能看到今天的DAU比昨天的DAU多了一倍,就说今天的DAU好于昨日,玩家更加积极(探寻有价值的DAU)。

留存率VS漏斗

大概我们现在在做留存分析都会用漏斗模型,因为一批用户进入游戏后,随着时间上是不断递减的,从玩家的游戏生命进程的确是这样的,然而这里面却存在了一个问题,这个漏斗不一定是个严格意义的漏斗。再来看上面的那张图,你会发现2日的留存率高于次日飞留存率,这里这种情况是存在的,实际的数据中也是存在的,至于原因后面会具体的来讲述。

留存率VS目的

我觉得用到留存率的目的是探寻一批用户的导入质量情况(包括游戏前期的成长等),或者是市场、渠道的质量研究,进而方便我们后期的调整投放策略,游戏改进方案。大概因此我们建立了留存率,作为一种转化率机制,来确定和为我们之前的目的服务。留存率是研究固定群体的转化情况,换句话我们是希望看到这个群体自然的变化情况,由于存在统计上时间滞后性,往往不小心就会带来错误。比如8月1日的次日留存在8月2日统计出来,3日留存在8月4日统计出来,7日留存在8月8日统计出来,但是如果我们够认真就会出现以下飞乌龙,比如8月2日统计的8月1日留存会错误的认为是8月2日的次日留存率。出现这个问题的原因就是统计日展现的数据不是统计日的,这点很多人在使用一些系统都会出现这样的问题。

其实费了不少话,最终要说的就是在下面这张图上:

此图中,我们列出来了每日新登玩家的次日、3日、7日的留存率,我们会发现每个固定的群体(每日新登作为一个独立的群体)次日、3日、7日的留存表现趋势基本上是相同的,也就是说,留存率的指标能够揭示一个群体在一段时间内的变化特征,且这种特征不会因为时间的变化而发生显著性改变。比如第37日的新登用户的次日、3日、7日留存表现都是保持一个趋势,这从某个角度来说,新玩家的期待或者特征我们游戏给予了最好的反馈,而这样的期待或者特征就是我们留存率使用起来的价值。(此处另外一种方式可以计算相邻两日留存率变化百分比,绘制曲线去分析这种趋势变化)

后记:

有关于留存的分析,留存率只是整体留存分析的很少一部分,真正挖掘留存的价值其实还要做很多工作,留存分析也不只是新用户的专利,比如充值用户的留存,这里没办法展开说。而一些留存率分析方法其实很多,这取决于我们分析的维度和角度,也许有时候你可以尝试一下做一个显著性分析,看看两个服务器的一段时间的留存变化是否显著,也许你也可以针对同时间的两个服务器的用户做分析,或者是不同渠道或者市场的用户分析,维度方式很多了,关键在于是否愿意去做。

其次,我一段时间以来一直使用几何平均数去处理这种“率”的概念,因为我们总要计算平均留存率,但是算数平均数不能屏蔽极端值的干扰,所以几何平均数是个很好的办法。

最后刚才提到一个关于漏斗的问题,这里我想把我的理解说一些,漏斗是作为一种分析转化率的形象化描述,但是在狭义的漏斗分析观念上(比如网站分析),我们的漏斗分析是针对一个session(一个会话期间)进行的转化率分析。然而我们这里的漏斗分析其实是一种广义上的转化率漏斗分析模式,即新登用户在次日登录了,那么在2日,3日,4日都可以登录,这里面不存在会话的,而狭义的漏斗是一个不断筛选的过程。因此这里的留存率是存在我们看到的3日大于次日的情况(这点在最后一部分中已经做了解释和说明)

时间: 2024-11-08 18:26:11

小白学数据分析-----> 留存率是什么?(番外篇)的相关文章

小白学数据分析----->留存率与运营活动分析_I

有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做.下面会给大家一张图,让小白们看到,真正懂得要如何看待和分析留存率的,恰好,也验证我之前的一个观点. 公测100+周,各周新用户在他们各自生命

小白学数据分析----->留存率使用的窘境_I

随着移动游戏整体的火热,现在看到太多的数据,太多信息,很多时候我们仰慕和钦佩别人的成功,我们总是把这个行业达成所谓共识的一些数据来出来说明问题.因为我们笃信数据是有力的证据,并且可以说明实力.然而太多的时候,因为沾染了更多的外在气氛,以至于在一些情况下看不到自己接下来的清晰的方向.比如今天说的留存率问题. 关于留存率,之前也谈到了很多,包括计算标准和使用方法,不过细心的人应该懂得那些只是一个最初级的阶段,因为即使你知道的留存率是什么,但是你会发现你依旧不知道要去做什么?原因在于,你觉得大家都在谈

小白学数据分析----->留存率的三个普适原则

关于留存率的文章,现在很多,以下要说的内容实际上算是对于留存率使用的一个小归纳.这篇文章所要阐述的内容其实早在去年就已经形成了,一直没有足够的时间组织起来,因为我觉得虽然简单,不过影响的范畴和可扩展的领域很多.值得去思考和借鉴. 留存率存在三个原则 留存率原则之一 不同用户群之间的留存率趋势是一致的 针对这点,其实可扩展的内容很多,比如不同渠道之间的用户留存趋势是一致的,不过不同渠道之间的留存率水平是不一致的,这一点在前一篇文章中已经有涉及过,这里不详细讲述.不同用户群,渠道的留存差异可以作为衡

小白学数据分析----->聚类分析理论之TwoSteps理论篇+实践篇

昨天分享了以前学习的聚类分析算法K-Means的部分知识,其实这个主要是了解一下这个算法的原理和适用条件就行了,作为应用而不是作为深入研究,能够很好的将业务和算法模型紧密结合的又有几人呢?所以一些基本知识还是很必要的,这里就是简单把看过的一些知识点列举一下,梳理一下,快速了解和使用. 今天把TwoSteps的知识也梳理一下,顺便做个小的演示,使用SPSS 19,后续在使用SPSS Modeler或者叫做Clementine再演示一次使用方法.首先上图. TwoSteps支持数值型和分类型数据,这

小白学数据分析----->聚类分析理论之K-means理论篇

聚类分析是一类广泛被应用的分析方法,其算法众多,目前像SAS.Splus.SPSS.SPSS Modeler等分析工具均以支持聚类分析,但是如何使用,尤其在网游数据分析方面,作用还是很大的,尤其是我们对于某些客群的分析时,排除人为的分组的干扰,客观和全面的展现客群的特征是一件很重要的事. 网游玩家的消费特征.游戏行为特征(副本.任务.交互).不同生命周期的玩家特征(新登玩家.留存玩家.流失玩家.回流玩家)等等,应用很广泛,然而我们发现有时候我们的划分是带有主观色彩的.比如明确分组变量.确定分组标

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

think in java interview番外篇-谈程序员如何修练英语

一.程序员对英语能力的重视度和能力要求应该是在各行各业中排在比较靠前的 这样说吧,英语程度的好坏直接影响着一个程序员的编程.开发.创新能力. 道理很简单: 1. 计算机和软件是用英语创造出来的 2. 国内的技术普及度不怎么高,而最前沿最好最全的资料也往往是英语 3.你在读OpenSource的一些源码时,这些OpenSource也大都来源于英语 因此英语和技术对于一个程序员来说是各占50%这样的一个比重的,英语能力的好坏直接影响到一个程序员的技术能力. 说到这儿其实还是主要源于国内的技术普及度不