机器学习模型开发必读:开源数据库最全盘点

开发 AI 和机器学习系统从来没有像现在这样方便。类似于 TensorFlow、Torch 和 Spark 这样的开源工具,在 AI 开发者群体中已是无处不在。再加上亚马逊 AWS、Google Cloud 等云服务带来的海量计算能力,将来使用笔记本电脑来训练 ML 模型或许不再难以想象。

公众对 AI 的遐想,总忽视了数据的角色。但海量被标记、注解过的数据,是当下 AI 革命当之无愧的主要推手之一。业内研究团队和公司机构,均明白“数据民主化”的意义——使任何开发者都能获取高质量的数据来训练、测试模型,是加速 AI 技术发展的必要措施。

但就雷锋网所知,大多数涉及机器学习和 AI 的产品依赖于专有数据库( proprietary datasets)。它们大多是不被公开的,以保护知识产权以及防范安全风险。

即便你幸运地找到了相关公共数据库,判断后者的价值和可靠程度,又是一项让很多开发者头痛的问题。对于概念论证是如此;对于潜在的产品或者特性验证同样如此——在收集你的专有数据之前,决定该验证需要何种数据集。

有经验的开发者都知道,机器学习系统在样本数据集上展示出的优异性能,并不能保证其实际效果。许多 AI 从业人员似乎已经忘记了,数据采集和标记才是开发 AI 解决方案最难的一环。标准的数据集,可被用作验证集,或作为开发更偏向私人订制方案的起始点。

本周,Vai Technologies 的创始人、前斯坦福 SLAC 实验室 CNN 算法架构师 Luke de Oliveira,和其他几名机器学习专家谈到了这个问题。雷锋网(公众号:雷锋网)了解到,他们最后决定做一张表单,把 AI 领域含金量最高的开源数据库罗列出来,与大家分享。

计算机视觉

MNIST

标签:学术基准 经典 较旧

合理性测试(sanity check)最常用的数据库。规格为 25x25、中心的、B&W 手写数字。用 MNIST 测试非常容易,但不要因为你的模型在 MNIST 运行良好,就认为它事实上可用。

地址:https://pjreddie.com/projects/mnist-in-csv/

CIFAR 10 & CIFAR 100

标签:经典 较旧

32x32 彩色图像。虽然用得人比以前少了很多,但仍然能用它做有趣的合理性测试。

地址:https://www.cs.toronto.edu/~kriz/cifar.html

ImageNet

标签:实用 学术基准 经典

这个用不着介绍,新算法的首选图像数据集。Luke de Oliveira 表示,许多图像 API 公司从 REST 交互界面搞来的标记,与 ImageNet 1000 目录中的 WordNet 层级很接近,让人怀疑。

地址:http://image-net.org/

LSUN

标签:无

场景理解,许多其它附加任务(比如房间布局预估,显着性预测 “saliency prediction”),以及与之关联的竞赛。

地址:http://lsun.cs.princeton.edu/2016/

PASCAL VOC

标签:学术基准

一般性的图像分割和分类。对于创建现实世界中的图像注解并不是十分有用,但作为基准很不错。

地址:http://host.robots.ox.ac.uk/pascal/VOC/

SVHN

标签:学术基准

谷歌街景视图中的住宅号。可以把它当做野生的递归( recurrent) MNIST。

地址:http://ufldl.stanford.edu/housenumbers/

MS COCO

标签:无

 一般性的图像理解/说明,有相关竞赛。

地址:http://mscoco.org/

Visual Genome

标签:实用

非常细致的视觉知识库,对超过十万张图像有深度注解。

地址:http://visualgenome.org/

Labeled Faces in the Wild

标签:实用 学术基准 经典 较旧

修剪过的面部区域(使用 Viola-Jones),用一个 name identifier 做过标记。其中每一个展示的人在数据集中有两个图像,这是作为他的子集。开发者经常用它来训练面部匹配系统。

地址:http://vis-www.cs.umass.edu/lfw/

自然语言

Text Classification Datasets

标签:实用 学术基准

来自论文 Zhang et al., 2015。这是有八个文字分类数据集组成的大型数据库。对于新的文字分类基准,它是最常用的。样本大小为 120K 到 3.6M,包括了从二元到 14 阶的问题。来自 DBPedia, Amazon, Yelp, Yahoo!,搜狗和 AG 的数据集。

地址:https://drive.google.com/drive/u/0/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M

WikiText

标签:实用 学术基准

源自高品质维基百科文章的大型语言建模语料库。Salesforce MetaMind 维护。

地址:http://metamind.io/research/the-wikitext-long-term-dependency-language-modeling-dataset/

Question Pairs

标签:实用

Quora 发布的第一个数据集,包含副本/语义近似值标记。

地址:https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

SQuAD

标签:实用 学术基准

斯坦福的问答社区数据集——适用范围较广的问题回答和阅读理解数据集。每一个回答都被作为一个 span,或者一段文本。

地址:https://rajpurkar.github.io/SQuAD-explorer/

CMU Q/A Dataset

标签:无

人工创建的仿真陈述问题/回答组合,还有维基百科文章的难度评分。

地址:http://www.cs.cmu.edu/~ark/QA-data/

Maluuba Datasets

标签:实用

为 NLP 研究人工创建的复杂数据集。

地址:https://datasets.maluuba.com/

Billion Words

标签:实用 学术基准

大型、通用型建模数据集。时常用来训练散布音(distributed)的词语表达,比如 word2vec 或  GloVe。

地址:http://www.statmt.org/lm-benchmark/

Common Crawl

标签:实用 学术基准

PB(拍字节)级别的网络爬虫。最经常被用来学习词语嵌入。可从 Amazon S3 免费获取。对于 WWW 万维网的信息采集,是一个比较有用的网络数据集。

地址:http://commoncrawl.org/the-data/

bAbi

标签:学术基准 经典

Facebook AI Research (FAIR) 推出的合成阅读理解和问题回答数据集。

地址:https://research.fb.com/projects/babi/

The Children's Book Test

标签:学术基准

Project Gutenberg(一项正版数字图书免费分享工程)儿童图书里提取的成对数据(问题加情境,回答)基准。对问答、阅读理解、仿真陈述(factoid)查询比较有用。

地址:https://research.fb.com/projects/babi/

Stanford Sentiment Treebank

标签:学术基准 经典 较旧

标准的情绪数据集,对每一句话每一个节点的语法树,都有细致的情感注解。

地址:http://nlp.stanford.edu/sentiment/code.html

20 Newsgroups

标签:经典 较旧

一个较经典的文本分类数据集。通常作为纯粹分类或者对 IR / indexing 算法验证的基准,在这方面比较有用。

地址:http://qwone.com/~jason/20Newsgroups/

Reuters

标签:经典 较旧

较老的、基于纯粹分类的数据集。文本来自于路透社新闻专线。常被用于教程之中。

地址:https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection

 IMDB

标签:经典 较旧

较老的、相对比较小的数据集。用于情绪分类。但在文学基准方面逐渐失宠,让位于更大的数据集。

地址:http://ai.stanford.edu/~amaas/data/sentiment/

UCI’s Spambase

标签:经典 较旧

较老的、经典垃圾邮件数据集,源自于 UCI Machine Learning Repository。由于数据集的管理细节,在学习私人订制垃圾信息过滤方面,这会是一个有趣的基准。

地址:https://archive.ics.uci.edu/ml/datasets/Spambase

语音

大多数语音识别数据库都是专有的——这些数据对其所有公司而言有巨大价值。绝大部分该领域的公共数据集已经很老了。

2000 HUB5 English

标签:学术基准 较旧

只包含英语的语音数据。最近一次被使用是百度的深度语音论文。

地址:https://catalog.ldc.upenn.edu/LDC2002T43

LibriSpeech

标签:学术基准

有声图书数据集,包含文字和语音。接近 500 个小时的清楚语音,来自于多名朗读者和多个有声读物,根据图书章节来组织。

地址:http://www.openslr.org/12/

VoxForge

标签:实用 学术基准

带口音英语的清晰语音数据集。如果你需要有强大的不同口音、语调识别能力,会比较有用。

地址:http://www.voxforge.org/

TIMIT

标签:学术基准 经典

只含英语的语音识别数据集。

地址:https://catalog.ldc.upenn.edu/LDC93S1

CHIME

标签:实用

含大量噪音的语音识别挑战杯数据集。它包含真实、模拟和清晰的录音:真实,是因为该数据集包含四个说话对象在四个不同吵闹环境下接近 9000 段的录音;模拟,是通过把多个环境与语音结合来生成;清晰,是指没有噪音的清楚录音。

地址:http://spandh.dcs.shef.ac.uk/chime_challenge/data.html

TED-LIUM

标签:无

TED 演讲的音频转录。包含 1495 场 TED 演讲,以及它们的完整字幕文本。

地址:http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus

推荐和排名系统

Netflix Challenge

标签:经典 较旧

第一个 Kaggle 模式的数据挑战。由于盗版问题只能获得非官方版本。

地址:http://www.netflixprize.com/

MovieLens

标签:实用 学术基准 经典

不同大小的电影点评数据——一般作为协同过滤的基准。

地址:https://grouplens.org/datasets/movielens/

Million Song Dataset

标签:无

Kaggle 上的大型、富含原数据的开源数据集。对于试验混合推荐系统有价值。

地址:https://www.kaggle.com/c/msdchallenge

Last.fm

标签:实用

音乐推荐数据集,并关联相关社交网络和其他元数据。对混合系统有用处。

地址:http://grouplens.org/datasets/hetrec-2011/

网络和图

Amazon Co-Purchasing 和 Amazon Reviews

标签:学术基准

从亚马逊“买了这个的用户还买了XXX”功能抓取的数据,还有相关商品的评价数据。对于试验网络中的推荐系统有价值。

地址:http://snap.stanford.edu/data/#amazon

http://snap.stanford.edu/data/amazon-meta.html

Friendster 社交网络数据集

标签:无

在成为游戏网站之前,Friendster 发布了 103,750,348 名用户朋友名单的匿名数据。

地址:https://archive.org/details/friendster-dataset-201107

地理空间数据

OpenStreetMap

标签:实用

整个地球的矢量数据,处于免费协议下。它的旧版本包含美国人口统计部门的 TIGER 数据。

地址:http://wiki.openstreetmap.org/wiki/Planet.osm

Landsat8

标签:实用

整个地球表面的卫星拍照,每隔几周更新一次。

地址:https://landsat.usgs.gov/landsat-8

NEXRAD

标签:实用

多普勒天气雷达对美国大气情况的扫描。

地址:https://www.ncdc.noaa.gov/data-access/radar-data/nexrad

后话

人们经常认为,能在一个数据集上解决问题,就等同于有了一个能用的产品。开发者可以使用这些数据集作为验证集,或用作概念论证;但别忘了测试,或创建模拟产品运行的原型机。获取更新、更真实的数据来改善模型非常关键。雷锋网了解到,成功的数据驱动型公司,往往擅长收集新的专有数据,以及改善产品性能增强竞争优势。而这往往是竞争对手难以直接 copy 的。

本文作者:三川

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-10-03 11:04:13

机器学习模型开发必读:开源数据库最全盘点的相关文章

7大开源数据库利弊全对比,哪款才最适合你的?

我喜欢披萨. 开玩笑啦.我喜欢披萨.特别是如果它是免费的时候. 我甚至喜欢看起来像免费披萨的东西.就在某一天,一个包裹来了我的邮箱中,它被包在一个披萨盒子里面.我要给 Etsy 店主五星好评.我保存了这个箱子.这比在披萨店中味道好多了. 免费比萨是我在校园里最喜欢的东西之一.在校园里的新俱乐部或组织的广告宣传单的角落里总会提到集会上会提供免费披萨.这样我就会在那里, 因为呃(你懂得) 不幸的是,正如我所学到的,有个无尽的迷宫被称为成年,披萨并不总是免费的.免费奶酪的甜美味道已经过去很久了. 但在

入门必读 机器学习六大开发语言

机器学习的初学者,普遍需要面对一个问题: 到底学习哪个编程语言? 答案可能会让你惊讶:对高手来说,这关系不大.只要你了解所选语言的机器学习库和工具,语言本身其实没那么重要.相当多的机器学习库支持多种编程语言.当然,取决于你在公司中的开发角色和你需要实现的任务,有些语言.库和工具会比其他的更高效.下面,我们来看看六大主流机器学习语言--R 语言.MATLAB.Python.Java .C/C++ 和 Lisp. R 语言 R 是一个专门设计来进行数据计算的语言工具.在大规模数据挖掘.可视化和报告的

如何开发机器学习模型?(机器学习入门第三篇)

在之前的两篇文章里面,分别介绍了机器学习可以做哪些业务,以及学习机器学习所需要的了解的算法知识.本文将分享开发机器学习模型的全过程. 1.机器学习入门系列第一篇: 机器学习能为你的业务做什么?有些事情你肯定猜不到! 2.机器学习入门第二篇:关于机器学习算法 你需要了解的东西 你应该已经熟悉所有的技术概念了吧,现在,我们可以把某个想法变成一个可用于生产的实际模型了. 建模步骤一览 从较高的层次上来讲,创建一个优秀的机器学习模型跟创建其他任何产品是一样的:首先从构思开始,把要解决的问题和一些潜在的解

一文读懂机器学习,大数据/自然语言处理/算法全有了……

作者:计算机的潜意识 在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一: 图1 机器学习界的执牛耳者

一篇文章,掌握所有开源数据库的现状

  数据库作为业务的核心,在整个基础软件栈中是非常重要的一环.近几年社区也是新的方案和思想层出不穷,接下来我将总结一下近几年一些主流的开源数据库方案,其背后的设计思想以及适用场景.本人才疏学浅如有遗漏或者错误请见谅.本次分享聚焦于数据库既结构化数据存储 OLTP 及 NoSQL 领域,不会涉及 OLAP.对象存储.分布式文件系统. 1 开源RDBMS与互联网的崛起 很长时间以来,关系型数据库一直是大公司的专利,市场被 Oracle / DB2 等企业数据库牢牢把持.但是随着互联网的崛起.开源社区

盘点2013:21款最优秀的开源数据库

作为一名软件开发人员或DBA,其中一份必不可少的工作就是与数据库打交道,比如MS SQL服务器.MySQL.Oracle.PostgreSQL.MongoDB等等.众所周知,其中MySQL是目前使用最广泛最好的免费开源数据库,此外,还有一些你不知道或者没用过但又非常出色的开源数据库,例如 PostgreSQL. MongoDB.HBase.Cassandra.Couchbase.Neo4j.Riak.Redis.Firebird 等. 在本文,作者总共总结了21个最优秀的开源数据库,不妨让我们一

通过机器学习来自动调优数据库

本文是卡耐基梅隆大学的 Dana Van Aken.Andy Pavlo 和 Geoff Gordon 所写.这个项目展示了学术研究人员如何利用 AWS Cloud Credits for Research Program 来助力他们的科技突破的. 数据库管理系统(DBMS)是任何数据密集应用的关键部分.它们可以处理大量数据和复杂的工作负载,但同时也难以管理,因为有成百上千个"旋钮"(即配置变量)控制着各种要素,比如要使用多少内存做缓存和写入磁盘的频率.组织机构经常要雇佣专家来做调优,

如何在iPhone上建立第一个机器学习模型

引言 作为一名数据科学家,我一直有一个梦想--顶级科技公司在与我相关的领域不断推出新产品. 如果你观看了Apple公司最新的iPhone X发布会,你会发现iPhone X具有非常酷的特性,比如FaceID.动态表情.增强现实,这些特性都使用了机器学习.作为一名骇客,我决定亲自上手探索一下如何建立那样的系统. 进一步调查后我发现了一个很有趣的工具,那就是Apple官方面向开发者推出的机器学习框架工具CoreML.它可以在iPhone.Macbook.Apple TV.Apple watch等任何

《构建实时机器学习系统》一1.8 实时机器学习模型的生存期

1.8 实时机器学习模型的生存期 进行实时机器学习开发必须考虑生存期.生存期是指一个系统从提出.设计.开发. 测试到部署运用.维护.更新升级或退役的整个过程.若在生存期设计上出现了数据,那么在后面的使用中就会出现各种各样的瓶颈阻碍应用产生价值. 从软件工程的角度上讲,开发实时机器学习也遵从构思.分析.设计.实现和维护五个步骤,这五个步骤可能会循环往复,随着业务的发展进行多次迭代.实时机器学习模型的应用由于其技术的特殊性,也具有自己的小型生存期,其中包括数据收集.数据分析.离线手工建模评测.上线自