利用OpenCV的人脸检测给头像带上圣诞帽

我们来看下效果

原图:

 

效果:

 

 

 

    原理其实很简单:

采用一张圣诞帽的png图像作为素材,

 

   

    利用png图像背景是透明的,贴在背景图片上就是戴帽子的效果了。

人脸检测的目的主要是为了确定贴帽子的位置,类似ps中自由变换的功能,检测到人脸中间的位置,resize圣诞帽子和人脸大小匹配,确定位置,贴上去,ok!

 

 

 

代码:非常简洁,根据参考博客给出的代码,由OpenCV自带的人脸检测代码经过简单修改即可。

// getheader.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

#pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_objdetect2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")  

/** Function Headers */
void detectAndDisplay( Mat frame );

/** Global variables */
//-- Note, either copy these two files from opencv/data/haarscascades to your current folder, or change these locations
String face_cascade_name = "D:\\Program Files\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
String eyes_cascade_name = "D:\\Program Files\\opencv\\sources\\data\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
string window_name = "Capture - Face detection";
RNG rng(12345);

const int FRAME_WIDTH = 1280;
const int FRAME_HEIGHT = 240;
/**
* @function main
*/
int main( void )
{
	CvCapture* capture;
	//VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
	if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };

			frame = imread("19.jpg");//背景图片

			//-- 3. Apply the classifier to the frame
			if( !frame.empty() )
			{ detectAndDisplay( frame ); }

			waitKey(0);

	return 0;
}

void mapToMat(const cv::Mat &srcAlpha, cv::Mat &dest, int x, int y)
{
	int nc = 3;
	int alpha = 0;

	for (int j = 0; j < srcAlpha.rows; j++)
	{
		for (int i = 0; i < srcAlpha.cols*3; i += 3)
		{
			alpha = srcAlpha.ptr<uchar>(j)[i / 3*4 + 3];
			//alpha = 255-alpha;
			if(alpha != 0) //4通道图像的alpha判断
			{
				for (int k = 0; k < 3; k++)
				{
					// if (src1.ptr<uchar>(j)[i / nc*nc + k] != 0)
					if( (j+y < dest.rows) && (j+y>=0) &&
						((i+x*3) / 3*3 + k < dest.cols*3) && ((i+x*3) / 3*3 + k >= 0) &&
						(i/nc*4 + k < srcAlpha.cols*4) && (i/nc*4 + k >=0) )
					{
						dest.ptr<uchar>(j+y)[(i+x*nc) / nc*nc + k] = srcAlpha.ptr<uchar>(j)[(i) / nc*4 + k];
					}
				}
			}
		}
	}
}

/**
* @function detectAndDisplay
*/
void detectAndDisplay( Mat frame )
{
	std::vector<Rect> faces;
	Mat frame_gray;
	Mat hatAlpha;

	hatAlpha = imread("2.png",-1);//圣诞帽的图片

	cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
	equalizeHist( frame_gray, frame_gray );
	//-- Detect faces
	face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

	for( size_t i = 0; i < faces.size(); i++ )
	{

		Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
		// ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 2, 8, 0 );

		// line(frame,Point(faces[i].x,faces[i].y),center,Scalar(255,0,0),5);

		Mat faceROI = frame_gray( faces[i] );
		std::vector<Rect> eyes;

		//-- In each face, detect eyes
		eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

		for( size_t j = 0; j < eyes.size(); j++ )
		{
			Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
			int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
			// circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 3, 8, 0 );
		}

		// if(eyes.size())
		{
			resize(hatAlpha,hatAlpha,Size(faces[i].width, faces[i].height),0,0,INTER_LANCZOS4);
			// mapToMat(hatAlpha,frame,center.x+2.5*faces[i].width,center.y-1.3*faces[i].height);
			mapToMat(hatAlpha,frame,faces[i].x,faces[i].y-0.8*faces[i].height);
		}
	}
	//-- Show what you got
	imshow( window_name, frame );
	imwrite("merry christmas.jpg",frame);
}

 

 

下面是摄像头实时戴帽子,改下主函数就好了:

 

int main( void )
{
	CvCapture* capture;
	//VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
	if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };

		//	frame = imread("19.jpg");//背景图片

			VideoCapture cap(0); //打开默认的摄像头号
			if(!cap.isOpened())  //检测是否打开成功
				return -1;

			Mat edges;
			//namedWindow("edges",1);
			for(;;)
			{
				Mat frame;
				cap >> frame; // 从摄像头中获取新的一帧
				detectAndDisplay( frame );
				//imshow("edges", frame);
				if(waitKey(30) >= 0) break;
			}
			//摄像头会在VideoCapture的析构函数中释放
			waitKey(0);

	return 0;
}

 

我的系统的是win10 64位的系统,之前摄像头出来都是黑的,发现需要用vs2010配置一下x64版本方可使用,查了半天还是自己之前写的博客靠谱:

就是按照win7 x64来配置,完美运行

 http://blog.csdn.net/wangyaninglm/article/details/16325283

 效果:

参考文献:

http://blog.csdn.net/lonelyrains/article/details/50388999

http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html

我调试好的工程:

点击打开链接



时间: 2025-01-01 00:01:43

利用OpenCV的人脸检测给头像带上圣诞帽的相关文章

怎样实现c++利用opencv实现人脸检测与识别

问题描述 怎样实现c++利用opencv实现人脸检测与识别 就是指通过摄像头保存识别的人脸,再次识别时如果被识别的人是已经添加图片的,就把他的名字显示出来,如果没有就将人脸保存.求大神,提前谢谢. 解决方案 这你需要机器学习才能够实现. 具体学习方法可以用BOOSTING算法,随机森林算法或者K邻近算法,具体代码可以从<学习OPENCV>中找到,若是不想自己敲代码,也可以在百度中区找.其实OPENCV的sample里也有相关的代码.不过你自己需要建立自己的数据库.

利用opencv实现人脸识别

问题描述 利用opencv实现人脸识别 目前本人已实现实时人脸检测,但怎样进一步完成特征采集存入数据库,并将检测到的人脸与数据库中的比对却没有头绪.求助!!! 解决方案 建议先从几何角度入手.先通过两眼具体.眼嘴距离等.判断正面人脸.有经验后.再尝试其他算法

如何在Android中用OPENCV实现人脸检测,人脸识别等功能,如何实现,用什么方法?

问题描述 如何在Android中用OPENCV实现人脸检测,人脸识别等功能,如何实现,用什么方法? 如何在Android中用OPENCV实现人脸检测,人脸识别等功能,如何实现,用什么方法? 解决方案 请问您做的怎么样了?

python结合opencv实现人脸检测与跟踪

  在Python下用起来OpenCV很爽,代码很简洁,很清晰易懂.使用的是Haar特征的分类器,训练之后得到的数据存在一个xml中.下面我们就来详细谈谈. 模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和pytho

python中使用OpenCV进行人脸检测的例子_python

OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

OpenCV + Python 人脸检测

必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征

浅析人脸检测之Haar分类器方法

很久没有看到这么精彩的博客了,必须转  [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉.  我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多地方都是写的模棱两可, 加这个补充, 也是希望看这篇文章同学要带着批判的眼光来看, 要想透彻的理解算法, 一是要看透算法原作

基于 OpenCV 的人脸识别

##一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台. 1

基于 OpenCV 的裸体检测

AI(人工智能)被用来处理一些奇怪的任务.算法网站Algorithmia搞出了一个"裸体检测器", 当然这不是能通过图灵测试的超级AI,也不是<终结者>中"天网"级别的机器人. 据称,原理如下: 首先,利用OpenCV的人脸检测器及鼻子检测器,去检测鼻子. 然后,从鼻子处采样,得到肤色的样本. 最后,对全图进行检测,与鼻子处颜色相近的,都认为是肤色. 如果肤色占比高于一定值,则会认为,图片是裸体. Algorithmia提供在线Demo, 允许你上传照片