数据挖掘十大经典算法(4)Apriori
Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法。它的核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集(简称频集),也常称为最大项目集。
在Apriori算法中,寻找最大项目集(频繁项集)的基本思想是:算法需要对数据集进行多步处理。第一步,简单统计所有含一个元素项目集出现的频数,并找出那些不小于最小支持度的项目集,即一维最大项目集。从第二步开始循环处理直到再没有最大项目集生成。循环过程是:第k步中,根据第k-1步生成的(k-1)维最大项目集产生k维侯选项目集,然后对数据库进行搜索,得到侯选项目集的项集支持度,与最小支持度进行比较,从而找到k维最大项目集。
从算法的运行过程,我们可以看出该Apriori算法的优点:简单、易理解、数据要求低,然而我们也可以看到Apriori算法的缺点:
(1)在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合的元素;
(2)每次计算项集的支持度时,都对数据库D中的全部记录进行了一遍扫描比较,如果是一个大型的数据库的话,这种扫描比较会大大增加计算机系统的I/O开销。而这种代价是随着数据库的记录的增加呈现出几何级数的增加。因此人们开始寻求更好性能的算法,如F-P算法。
时间: 2024-11-25 23:04:50