深度学习要另起炉灶,彻底抛弃反向传播?

这是言论的主要出处:

Artificial intelligence pioneer says we need to start over(http://t.cn/RpR0Q18)

以及 Fei-Fei Li 在 Twitter 上的评论:

Echo Geoff's sentiment no tool is eternal, even backprop or deeplearning. V. important to continue basic research.(http://t.cn/RpFfw5f)

在深度学习才开始流行但是没有像如今这么成熟的时候(2011 年),Hinton 等人就已经开始思考一个问题:深度学习依赖的反向传播算法 (back-prop) 在生物学上是很难成立的,很难相信神经系统能够自动形成与正向传播对应的反向传播结构(这需要精准地求导数,对矩阵转置,利用链式法则,并且解剖学上从来也没有发现这样的系统存在的证据)。

另外一点是,神经系统是有分层的(比如视觉系统有 V1, V2 等等分层),但是层数不可能像现在的大型神经网络一样动不动就成百上千层(而且生物学上也不支持如此,神经传导速度很慢,不像用 GPU 计算神经网络一层可能在微秒量级,生物系统传导一次一般在 ms 量级,这么多层数不可能支持我们现在这样的反应速度,并且同步也存在问题)。

但是有趣的是,目前大多数研究指出,大脑皮层中普遍存在一种称为 Cortical minicolumn 的柱状结构,其内部含有上百个神经元,并存在分层。这意味着人脑中的一层并不是类似现在神经网络的一层,而是有复杂的内部结构。

(mini-column 图片,引自 minicolumn hypothesis in neuroscience | Brain | Oxford Academic)

Hinton 模仿 mini-column 提出了对应的人工神经网络结构 Capsule (2011 年),对应论文为 Transforming Auto-encoders(http://t.cn/RpFfYrb)。

(Capsule 示意图,来自论文)

不过 Hinton 也没有料到后来 CNN 发展的如此火,他当时的这篇论文没有怎么受到关注。这几年他也没有继续关注这个问题,因为 CNN,LSTM, NTM 等等问题太多太有趣。

不过到现在,CNN 的发展似乎到了一个瓶颈:特别大,特别深的网络;容易被对抗样本欺骗;仍然需要大量训练数据;无监督学习方面进展很少。

Hinton 在题主给的视频中重新分析了一下目前 CNN 的问题,主要集中在 Pooling 方面(我认为可以推广到下采样,因为现在很多 CNN 用卷积下采样代替 Pooling 层)。Hinton 认为,过去人们对 Pooling 的看法是能够带来 invariance 的效果,也就是当内容发生很小的变化的时候(以及一些平移旋转),CNN 仍然能够稳定识别对应内容。

Hinton 觉得这是一个错误的方向。他给出了一个心理学实验的例子,这个例子要求判断两个 R 是否是一样的,仅仅因为旋转导致不同:

(几乎所有)人的做法是下意识的旋转左侧的 R,“看” 它们是否重合。

但是按照 CNN 的 invariance 的想法完全不是这么做。如果你对训练神经网络有经验,你可能会想到我们在做图像预处理和数据拓增的时候,会把某些图片旋转一些角度,作为新的样本,给神经网络识别。这样 CNN 能够做到对旋转的 invarience,并且是 “直觉上” 的 invariance,根本不需要像人那样去旋转图片,它直接就 “忽视” 了旋转,因为我们希望它对旋转 invariance。

CNN 同样强调对空间的 invariance,也就是对物体的平移之类的不敏感(物体不同的位置不影响它的识别)。这当然极大地提高了识别正确率,但是对于移动的数据(比如视频),或者我们需要检测物体具体的位置的时候,CNN 本身很难做,需要一些滑动窗口,或者 R-CNN 之类的方法,这些方法很反常(几乎肯定在生物学中不存在对应结构),而且极难解释为什么大脑在识别静态图像和观察运动场景等差异很大的视觉功能时,几乎使用同一套视觉系统。

因此 Hinton 认为,人脑做到的是 equivariance ,也就是能够检测到平移、选转等等各种差异,但是能够 “认识” 到他们在某些视觉问题场景下是相同的,某些场景下应该有所区别,而不是像 CNN 一样为了追求单一的识别率,用 invariance 掩盖这些差异。

于是 Hinton 重新开始关注 Capsules 的问题,希望从中有所突破,解决之前深度学习中的很多问题。如果确实能够解决这些问题,Hinton 有勇气完全抛弃之前的体系结构,从 0 开始。

这是 Hinton 最近被 NIPS 接受的关于 Capsules 论文 Dynamic Routing between Capsules (未发表)https://research.google.com/pubs/pub46351.html 。其在 MNIST 上非常成功,识别率达到了新高,同时解决了 CNN 难以识别重叠图像等问题。

注:上文中 equivalence 改为了 equivariance,这是更准确的说法

一些分析

虽然现在只有论文摘要,以及 Hinton 最近的视频,我们还是可以分析一下 Hinton 的想法和追求:

  • 可解释性。

按照 Hinton 的说法,Capsule 是一组神经元,这组神经元的激发向量可以代表对应于一类实体(比如一个物体,或者一个物体的部件)的实例参数(instantiation parameters)。这个说法非常像 Hinton 曾经提的 “专家积”(Products of Experts)[1] 的概念,他用这个概念解释著名的对比散度(contrastive divergence)算法 [2]。更为人熟知的是 Andrew Y. Ng 的关于自动从视频中识别猫脸的实验 [3],这些实验都暗示了某个神经元可以代表代表某些物体实例(祖母细胞假说)。但是我们知道,某个神经元自身是个简单的数学变换,其自身不能起到决定性的作用。CNN 等能够自动抽取图像特征等等性质已经为人熟知,但是到底是哪些神经元或者哪些结构起了作用?这个很难回答。现代大多数神经网络的结构是相对整体且比较粗糙的,很难解释其内部的具体作用机制,因此我们常常把神经网络称为 “黑盒模型”。现在有了 Capsule 后,我们或许可以以  Capsule 为单位分析得出每个 Capsule 具体的作用,这样可解释性要强很多。
注:从视频中看 Hinton 所说的 instantiation parameters 应该是指表征以下内容的参数: 
1. 某类物体出现的概率
2. 物体的一般姿态 (generalized pose),包括位置,方向,尺寸,速度,颜色等等

  • 因果性。

这是 Hinton 在视频中重点提到的,也是很多机器学习专家关心的东西。现在的神经网络缺乏某种 “推断” 的机制,更多是目标函数最大化下的函数拟合。我们知道网络能够正确分类某个图片,但是为什么?图片中什么部分或者条件才导致网络得出这个结论?如果分类出错了,又是什么具体的部分或者条件误导了它?这些我们都不是非常清楚,大部分时候仅仅靠调参提高结果。而论文中 Dynamic Routing,就是希望能够形成一种机制,让网络能够将适合 Capsule_A 处理的内容,路由到 Capsule_A 让其处理。这样就形成了某种推断链。“找到最好的(处理)路径等价于(正确)处理了图像”,Hinton 这样解释。

Hinton 指出,原先的 Pooling,类似于静态的 routing,仅仅把上面的结果原地交给下面一层的神经元。(下面图片中 Dynamic Routing 仅供示意,具体实现要看发表出来的论文)

  • 无监督学习。

这点也是 Hinton 强调的(原话似乎是 A human does not know so much labels)。Hinton 估计有在 Capsule 基础上做无监督研究的意向,在之前的 [4] 中 Hinton 已经用 Capsule 实现了自编码器。

如何看待 Hinton 重新提出的 Capsule ?

首先这个工作成功或者不成功都是很正常的,就算 Capsule 真的会成为以后的趋势,Hinton 也未必这么快找到正确的训练算法;就算 Hinton 找到了正确的训练算法,也没有人能够保证,Capsules 的数量不到人脑中 mini-columns 数量的时候,能够起达到人类的识别率(何况现在 CNN 虽然问题很多,但是识别率很多已经超过人类了)。

另外看之前的关于 Capsules 的论文 [4],其中的结果在 2011 年还是不错的,但是相比近年来的 CNN 就差多了,这恐怕也是 Capsules 随后没有火起来的原因。很多人都吐槽现在深度学习各种各样的问题,需要大量调参,但是每次调参都能有一大批人在论文发表 deadline 前调到想要的效果,这个也不得不服啊;不服你用 SIFT 给你一年调到一样的效果试试?

或许最糟的结果是,如同分布式存储中著名的 CAP 理论(又叫 Brewer's theorem)所述,一致性,可用性和分片性三者不能同时满足;或许对于机器学习,正确率,可解释性,因果性也不能同时满足(最好的模型必然最难理解)。Hinton 晚年试图突破深度学习就像爱因斯坦晚年试图统一电磁力和引力一样,是注定无法成功的。不过相信 Hinton 仍然愿意等下去,毕竟从反向传播提出,到深度学习的火爆,Hinton 已经坚守了 30 年了。

评论中有人提到,人工神经网络不必非要按照生物的路子走。我想 Hinton 重提 Capsule 的原因不只是因为 Capsule 在生物学上有支持,而是其有可以实施 dynamic routing 算法等的优良性质,Hinton 在其上看到了一些可能的突破点。

最早的神经网络作为感知机出现的时候是按照 Hebb's rule 学习的,可以说是非常生物了。正是 Hinton 和 LeCun 搞出脱离生物模型的反向传播算法,以及 Hinton 后来基于热力学统计做的玻尔兹曼机和受限玻尔兹曼机以及配套的对比散度算法,才有了深度学习的今天。

[1] Hinton, G. E. (1999). Products of experts.

[2] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural computation, 14(8), 1771-1800.

[3] Le, Q. V. (2013, May). Building high-level features using large scale unsupervised learning. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 8595-8598). IEEE.

[4] Hinton, G. E., Krizhevsky, A., & Wang, S. D. (2011, June). Transforming auto-encoders. In International Conference on Artificial Neural Networks (pp. 44-51). Springer Berlin Heidelberg.

本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-10-29 19:59:50

深度学习要另起炉灶,彻底抛弃反向传播?的相关文章

AI大事件 | Geoffrey Hinton决定抛弃反向传播,预期策略梯度算法

呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了.过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件! 了解过去一周AI爆点,一篇就够啦! 新闻 Geoffrey Hinton决定抛弃反向传播 来源:WWW.AXIOS.COM 链接:https://www.axios.com/ai-pioneer-advocates-starting-over-2485537027.html?utm_c

零基础入门深度学习(三):卷积神经网络

投稿:Intelligent Software Development 团队介绍:团队成员来自一线互联网公司,工作在架构设计与优化.工程方法研究与实践的最前线,曾参与搜索.互联网广告.共有云/私有云等大型产品的设计.开发和技术优化工作.目前主要专注在机器学习.微服务架构设计.虚拟化/容器化.持续交付/DevOps等领域,希望通过先进技术和工程方法最大化提升软件和服务的竞争力.   在前面的文章中,我们介绍了全连接神经网络,以及它的训练和使用.我们用它来识别了手写数字,然而,这种结构的网络对于图像

零基础入门深度学习(4) - 卷积神经网络

在前面的文章中,我们介绍了全连接神经网络,以及它的训练和使用.我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适.本文将要介绍一种更适合图像.语音识别任务的神经网络结构--卷积神经网络(Convolutional Neural Network, CNN).说卷积神经网络是最重要的一种神经网络也不为过,它在最近几年大放异彩,几乎所有图像.语音识别领域的重要突破都是卷积神经网络取得的,比如谷歌的GoogleNet.微软的ResNet等,打败李世石的AlphaGo也用到了这

Geffory Hinton:深度学习进入平台期?不,深度学习需要的是“推倒重来”

一个星期前由François Chollet在Twitter上引发的"深度学习是否进入平台期"的讨论,因为大神Geffory Hinton的参与达到了高峰. Hinton:深度学习可能需要"推倒重来" 据科技媒体Axios报道,上周三在多伦多举行的一个AI会议上Hinton表示,他现在对反向传播算法"深感怀疑".这一算法是用来训练人工神经网络的常见方法,该方法计算对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化

在Twitter信息流中大规模应用深度学习

从我们开始对信息流进行改进到现在已经有一年多时间了,我们进一步改进了底层的算法,从而为用户呈现具有更高相关度的内容. 我们将会在这篇文章里介绍我们基于深度神经网络的信息流排序算法,以及由Twitter内部AI团队Cortex构建的AI平台和它提供的建模功能.简而言之,现在和未来的Twitter信息流将具有更高的相关度.这为我们打开了一扇大门,我们可以使用由深度学习社区提供的各种新颖的技术,特别是在NLP(自然语言处理).对话理解和媒体领域. 我们如何对信息流进行排序? 在引入排序算法之前,信息流

深度学习鼻祖Geoffrey Hinton帮你入门带你飞

本文联合编译:Blake.高斐 雷锋网注:Geoffrey Everest Hinton(杰弗里·埃弗里斯特·辛顿 )是一位英国出生的计算机学家和心理学家,以其在神经网络方面的贡献闻名.辛顿是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者,目前任职于多伦多大学与Google.作为人工智能领域的三位奠基人之一,早在30年前,辛顿就已经在深度学习领域留下了自己的烙印.然而,直到计算机的性能达到深度学习的要求,辛顿才开始在学术界以外得到自己应得的广泛认可,本文是他对于深度学习介绍的演

【干货】AI 实践者需要掌握的10大深度学习方法:反向传播、迁移学习、梯度下降……

过去10年,人们对机器学习的兴趣激增.几乎每天,你都可以在各种各样的计算机科学课程.行业会议.华尔街日报等等看到有关机器学习的讨论.在所有关于机器学习的讨论中,许多人把机器学习能做的事情和他们希望机器学习做的事情混为一谈.从根本上讲,机器学习是使用算法从原始数据中提取信息,并在某种类型的模型中表示这些信息.我们使用这个模型来推断还没有建模的其他数据. 神经网络是机器学习的一种模型,它们至少有50年历史了.神经网络的基本单元是节点(node),基本上是受哺乳动物大脑中的生物神经元启发.神经元之间的

零基础入门深度学习(3) - 神经网络和反向传播算法

   神经元   神经元和感知器本质上是一样的,只不过我们说感知器的时候,它的激活函数是阶跃函数:而当我们说神经元时,激活函数往往选择为sigmoid函数或tanh函数.如下图所示:       sigmoid函数的定义如下:     将其带入前面的式子,得到     sigmoid函数是一个非线性函数,值域是(0,1).函数图像如下图所示     sigmoid函数的导数是:     可以看到,sigmoid函数的导数非常有趣,它可以用sigmoid函数自身来表示.这样,一旦计算出sigmoi

零基础入门深度学习(二):神经网络和反向传播算法

投稿:Intelligent Software Development 团队介绍:团队成员来自一线互联网公司,工作在架构设计与优化.工程方法研究与实践的最前线,曾参与搜索.互联网广告.共有云/私有云等大型产品的设计.开发和技术优化工作.目前主要专注在机器学习.微服务架构设计.虚拟化/容器化.持续交付/DevOps等领域,希望通过先进技术和工程方法最大化提升软件和服务的竞争力.   在上一篇文章<零基础入门深度学习:感应器.线性单元和梯度下降>中,我们已经掌握了机器学习的基本套路,对模型.目标函