《JavaScript构建Web和ArcGIS Server应用实战》——2.7 总结

2.7 总结

我们已经在本章中涵盖了很多基础内容。所有使用ArcGIS API for JavaScript创建的应用程序需要一组特定的步骤,我们称之为样板代码,它包括定义引用API和样式表、加载模块、创建初始化函数和一些其他步骤。在初始化函数中,将会创建一个地图、添加各种图层和在使用应用程序之前需要执行其他的安装操作。在本章中,我们学会了如何执行这些任务。

此外,我们学习了多种可以添加到地图上的图层,包括切片地图服务图层和动态地图服务图层。切片地图服务图层是预先创建的并且缓存在服务器上,因此常用来作为应用程序中的底图。动态服务图层是每次一个请求发生后创建的,所以可能需要更长的时间才能产生。然而,动态地图服务图层能用来执行多种类型的操作,包括查询、设置定义表达式和更多其他操作。

另外,我们已经学会了通过编程的方式来控制地图范围。最后,我们介绍了事件这个主题,学会了事件如何与事件处理程序关联,其实就是一个简单的JavaScript函数,它运行在一个特殊事件被触发的任何时机。在下一章中,我们将密切关注如何添加图形到应用程序中。

时间: 2024-09-08 13:01:21

《JavaScript构建Web和ArcGIS Server应用实战》——2.7 总结的相关文章

《LDA漫游指南》——第2章 前置知识

第2章 前置知识 LDA漫游指南 本章所描述的工具和线索在后期LDA算法的采样公式推导中会全部明了.关于为什么需要使用这些知识要素,这里面有很长的一段历史渊源,比如在概率论和数理统计中,gamma函数被广泛使用,而在最终的LDA采样公式中,你会发现,gamma函数被神奇地消失了.我们在后面的章节中可以看到,LDA算法的精妙之处在于用令人屏息的洞察力作为纽带,将零散的部件全部组合在一起. 2.1 gamma函数 所谓的gamma函数其实就是阶乘的函数形式,即n!=1⋅2⋅3-n.如果我问你3的阶乘

《LDA漫游指南》——第1章 背景

第1章 背景 LDA漫游指南 LDA算法使用的全部知识的渊源可以追溯到18世纪的欧拉.欧拉(Leonhard Euler ,1707年4月15日-1783年9月18日),瑞士数学家,如图1-1所示.欧拉一生贡献颇丰,1734年,欧拉因解决巴塞尔问题而出名,巴塞尔问题见式(1.1)的值是多少. (1.1) 这个问题困扰了数学家长达几个世纪的,当时的数学家只知道该级数的值小于2,但不知道精确值,欧拉准确的推导出该式的值等于π^2/6.欧拉的方法聪明而新颖,他创造性地将有限多项式的观察推广到无穷级数,

《LDA漫游指南》——2.3 Beta分布(Beta distribution)

2.3 Beta分布(Beta distribution) 在概率论中,Beta分布是指一组定义在区间(0,1)的连续概率分布,有两个参数alpha 和beta ,且alpha ,beta > 0. Beta分布的概率密度函数是 (2.5) 随机变量X服从参数为的Beta分布通常写作:Xsim Beta(alpha ,beta ). 这个式子中分母的函数B(alpha ,beta )称为beta函数. 两种证明方法这里我们来证明一个重要的公式,该公式中的关系在LDA算法Gibbs Samplin

《LDA漫游指南》——2.6 共轭先验分布(conjugacy prior)

2.6 共轭先验分布(conjugacy prior) In Bayesian probability theory, if the posterior distributions p(θ |x) are in the same family as the prior probability distribution p(θ), the prior and posterior are then called conjugate distributions, and the prior is ca

《LDA漫游指南》——2.7 总结

2.7 总结 1. 贝叶斯学派采用给参数赋予先验分布,并使得先验与后验共轭,通过求后验均值来得到参数的估计,频率学派通过某个优化准则,比如最大化似然函数来求得参数的估计:不管是哪个学派思想,都要用到似然函数.注意到似然函数有所不同,这点在极大似然估计(MLE)和最大后验概率估计(MAP)体现得尤其明显. 2.当拥有无限数据量时(Beta分布式中的s和f都趋向于无穷,Dirichlet分布式中的m趋向于无穷),贝叶斯方法和频率学派方法所得到的参数估计是一致的.当在有限的数据量下,贝叶斯学派的参数后

《LDA漫游指南》——2.2 二项分布(Binomial distribution)

2.2 二项分布(Binomial distribution) 在概率论中,二项分布即重复n次独立的伯努利试验.在每次试验中只有两种可能的结果(成功/失败),每次成功的概率为p,而且两种结果发生与否互相对立,并且相互独立,与其他各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布. 在给出二项分布之前,我们来做一个例子,假设你在玩CS这个游戏,你拿着狙击枪,敌人出现,你打中敌人的概率是p,打不中敌人的概率是

《LDA漫游指南》——2.4 多项分布(multinomial distribution)

2.4 多项分布(multinomial distribution) 多项分布[1]是二项分布的推广扩展,在n次独立试验中每次只输出k种结果中的一个,且每种结果都有一个确定的概率p.多项分布给出了在多种输出状态的情况下,关于成功次数的各种组合的概率. 举个例子,投掷n次骰子,这个骰子共有6种结果输出,且1点出现概率为p_1,2点出现概率p_2,--多项分布给出了在n次试验中,骰子1点出现x_1次,2点出现x_2次,3点出现x_3次,-,6点出现x_6次.这个结果组合的概率为 式(2.8)为多项分

《LDA漫游指南》——2.5 狄利克雷分布(Dirichlet Distribution)

2.5 狄利克雷分布(Dirichlet Distribution) Dirichlet分布是Beta分布在多项情况下的推广,也是多项分布的共轭先验分布(共轭先验分布将在2.6节进行介绍).Dirichlet分布的概率密度函数如下: 二项分布和多项分布很相似,Beta分布和Dirichlet 分布很相似,至于"Beta分布是二项式分布的共轭先验概率分布,而Dirichlet分布是多项式分布的共轭先验概率分布"这点会在下文中进行说明. 另一个重要的公式是 为了简便表达,公式中引入了希腊字

[python] LDA处理文档主题分布代码入门笔记

以前只知道LDA是个好东西,但自己并没有真正去使用过.同时,关于它的文章也非常之多,推荐大家阅读书籍<LDA漫游指南>,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验.这篇文章主要是讲述Python下LDA的基础用法,希望对大家有所帮助.如果文章中有错误或不足之处,还请海涵~ 一. 下载安装 LDA推荐下载地址包括:其中前三个比较常用.        gensim下载地址:https://radimrehurek.com/gensim/models/ldamodel.ht

前端知识图谱,你值得收藏

综合类 - [前端知识体系](http://www.cnblogs.com/sb19871023/p/3894452.html) - [前端知识结构](https://github.com/JacksonTian/fks) - [Web前端开发大系概览](https://github.com/unruledboy/WebFrontEndStack) - [Web前端开发大系概览-中文版](http://www.cnblogs.com/unruledboy/p/WebFrontEndStack.h