linux 高端内存映射方式

1.1 内核地址空间(线性空间)分布

 

(1) 直接映射区:线性空间中从3G开始最大896M的区间,为直接内存映射区,该区域的线性地址和物理地址存在线性转换关系:线性地址=3G+物理地址。

(2) 动态内存映射区:该区域由内核函数vmalloc来分配,特点是:线性空间连续,但是对应的物理空间不一定连续。vmalloc分配的线性地址所对应的物理页可能处于低端内存,也可能处于高端内存。

(3) 永久内存映射区:该区域可访问高端内存。访问方法是使用alloc_page(_GFP_HIGHMEM)分配高端内存页或者使用kmap函数将分配到的高端内存映射到该区域。

(4) 固定映射区:该区域和4G的顶端只有4k的隔离带,其每个地址项都服务于特定的用途,如ACPI_BASE等。

说明:

注意用户空间当然可以使用高端内存,而且是正常的使用,内核在分配那些不经常使用的内存时,都用高端内存空间(如果有),所谓不经常使用是相对来说的,比如内核的一些数据结构就属于经常使用的,而用户的一些数据就属于不经常使用的。用户在启动一个应用程序时,是需要内存的,而每个应用程序都有3G的线性地址,给这些地址映射页表时就可以直接使用高端内存。

而且还要纠正一点的是:那128M线性地址不仅仅是用在这些地方的,如果你要加载一个设备,而这个设备需要映射其内存到内核中,它也需要使用这段线性地址空间来完成,否则内核就不能访问设备上的内存空间了。

总之,内核的高端线性地址是为了访问内核固定映射以外的内存资源。进程在使用内存时,触发缺页异常,具体将哪些物理页映射给用户进程是内核考虑的事情。在用户空间中没有高端内存这个概念。

 

1.2 高端内存映射

高端内存映射含义为:将线性地址空间 (范围从PAGE_OFFSET + 896M 至4G的最后128M)映射到 896M以上的物理页框。如下图所示:

 

高端内存映射有三种方式(都是非直接映射):

 

1.2.1 映射到“内核动态映射空间”(非连续内存区映射)

这种方式很简单,因为通过 vmalloc() ,在内核“动态映射空间”申请内存的时候,就可能从高端内存获得页面(参看 vmalloc 的实现),因此说高端内存有可能映射到“内核动态映射空间 ”中。

1.2.2  永久内核映射

如果是通过 alloc_page() 获得了高端内存对应的 page,如何给它找个线性空间?
内核专门为此留出一块线性空间,从 PKMAP_BASE 到 FIXADDR_START ,用于映射高端内存。在 2.4 内核上,这个地址范围是 4G-8M 到 4G-4M 之间。这个空间起叫“内核永久映射空间”或者“永久内核映射空间”这个空间和其它空间使用同样的页目录表,对于内核来说,就是 swapper_pg_dir,对普通进程来说,通过 CR3 寄存器指向。通常情况下,这个空间是 4M 大小,因此仅仅需要一个页表即可,内核通过来 pkmap_page_table 寻找这个页表。通过 kmap(), 可以把一个 page 映射到这个空间来。由于这个空间是 4M 大小,最多能同时映射 1024 个 page。因此,对于不使用的 page,及应该时从这个空间释放掉(也就是解除映射关系),通过 kunmap() ,可以把一个 page 对应的线性地址从这个空间释放出来。永久内存映射允许建立长期映射。

1.2.3 临时映射

内核在 FIXADDR_START 到 FIXADDR_TOP 之间保留了一些线性空间用于特殊需求。这个空间称为“固定映射空间”在这个空间中,有一部分用于高端内存的临时映射。

这块空间具有如下特点:

1、 每个 CPU 占用一块空间

2、 在每个 CPU 占用的那块空间中,又分为多个小空间,每个小空间大小是 1 个 page,每个小空间用于一个目的,这些目的定义在 kmap_types.h 中的 km_type 中。当要进行一次临时映射的时候,需要指定映射的目的,根据映射目的,可以找到对应的小空间,然后把这个空间的地址作为映射地址。这意味着一次临时映射会导致以前的映射被覆盖。

通过 kmap_atomic() 可实现临时映射。可以用在中断处理函数和可延迟函数的内部,从不阻塞。因为临时内存映射是固定内存映射的一部分,一个地址固定给一个内核成分使用。

时间: 2024-09-08 10:24:28

linux 高端内存映射方式的相关文章

Linux高端内存管理之永久内核映射

inux高端内存管理之永久内核映射 与直接映射的物理内存末端.高端内存的始端所对应的线性地址存放在high_memory变量中,在x86体系结构上,高于896MB的所有物理内存的范围大都是高端内存,它并不会永久地或自动地映射到内核地址空间,尽管x86处理器能够寻址物理RAM的范围达到4GB(启用PAE可以寻址到64GB).一旦这些页被分配,就必须in射到内核的逻辑地址空间上.在x86上,高端内存中的页被映射到3GB-4GB. 内核可以采用三种不同的机制将页框映射到高端内存:分别叫做永久内核映射.

Linux高端内存映射(上)【转】

转自:http://blog.csdn.net/vanbreaker/article/details/7579941 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 高端内存概述 永久内核映射   高端内存概述         在32位的系统上,内核占有从第3GB~第4GB的线性地址空间,共1GB大小,内核将其中的前896MB与物理内存的0~896MB进行直接映射,即线性映射,将剩余的128M线性地址空间作为访问高于896M的内存的一个窗口.引入高端内存映射这样一个概

Linux用户空间与内核空间(理解高端内存)

Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中.   Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图.   Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里

Linux内存管理:高端内存的映射方式

高端内存是指物理地址大于 896M 的内存. 对于这样的内存,无法在"内核直接映射空间"进行映射. 为什么? 因为"内核直接映射空间"最多只能从 3G 到 4G,只能直接映射 1G 物理内存,对于大于 1G 的物理内存,无能为力. 实际上,"内核直接映射空间"也达不到 1G, 还得留点线性空间给"内核动态映射空间" 呢. 因此,Linux 规定"内核直接映射空间" 最多映射 896M 物理内存. 对于高端内

解析Linux系统下的高端内存

  Linux内核地址空间划分 通常32位Linux内核虚拟地址空间划分0~3G为用户空间,3~4G为内核空间(注意,内核可以使用的线性地址只有1G).注意这里是32位内核地址空间划分,64位内核地址空间划分是不同的. 通常32位Linux内核虚拟地址空间划分0~3G为用户空间,3~4G为内核空间(注意,内核可以使用的线性地址只有1G).注意这里是32位内核地址空间划分,64位内核地址空间划分是不同的. Linux内核高端内存的由来 当内核模块代码或线程访问内存时,代码中的内存地址都为逻辑地址,

Linux内存管理-高端内存(一)

高端内存是指物理地址大于 896M 的内存.对于这样的内存,无法在"内核直接映射空间"进行映射. 为什么? 因为"内核直接映射空间"最多只能从 3G 到 4G,只能直接映射 1G 物理内存,对于大于 1G 的物理内存,无能为力. 实际上,"内核直接映射空间"也达不到 1G, 还得留点线性空间给"内核动态映射空间" 呢. 因此,Linux 规定"内核直接映射空间" 最多映射 896M 物理内存. 对于高端内存

linux-3.2.36内核启动2-setup_arch中的内存初始化1(arm平台 分析高端内存和初始化memblock)【转】

转自:http://blog.csdn.net/tommy_wxie/article/details/17093307 上一篇微博留下了这几个函数,现在我们来分析它们         sanity_check_meminfo();         arm_memblock_init(&meminfo, mdesc);         paging_init(mdesc);         request_standard_resources(mdesc);   在上一微博有展现根据启动参数初始化

linux中高端内存和低端内存的概念【转】

转自:http://blog.csdn.net/hdujinhuihui/article/details/8686817 高端内存是Linux中一个重要的概念,初涉Linux时曾经对这个概念非常迷惑.实际上这个概念比较简单,理解这个概念,需要追溯一下Linux的内存管理.     从前,CPU的地址总线只有32位.32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间,在物理上理论上最多拥有 4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间.为了

Linux 存储管理2——内存管理

1.MMU(内存管理单元) MMU是怎么将逻辑地址转换成物理地址? MMU是一种硬件电路,它包含两个部件,一个是分段部件,一个是分页部件,通过分段机制(把一个逻辑地址转换为线性地址,线性地址也是32位,其地址取值范围为0x00000000~0xffffffff)和分页机制(把一个线性地址转换为物理地址),最终将逻辑地址映射为物理地址.如下图: 1.1 分段机制 在操作系统原理关于分段的说明:段的分配时为了更好的满足用户,段的长度不固定,由用户定义,每个段都有自己的地址空间(通过基址包含某物理内存