浅谈VMware的内存分配

为方便识别虚拟的资源和物理(或叫真实的)资源,本人文章中以小写字母v前缀标识虚拟资源,小写字母p前缀标识物理资源。例如:

vCPU = 虚拟CPU

pCPU = 物理CPU

vRAM = 虚拟机的内存,也称之为Guest OS配置内存(Configured Size),或者说GOS的物理内存

pRAM = 物理内存,也称机器内存(Machine Memory),或主机物理内存(Host Physical Memory)

=============================================

VM的内存资源分配,有3个可以配置的项:Limit,Reservation和Shares

【Memory Limit】

Memory Limit,顾名思义,内存上限,就是Host可以分配给此VM的pRAM数的上限。

默认情况下是选中unlimited复选框的,也就是不设上限。不设上限不意味着没有上限,隐含的上限值是分配给VM的内存值。

Q: 什么情况下要设置Memory Limit呢?(或者说Memory Limt有什么好处?)

A: 一般情况下不用设置Memory Limt。

Limit通常用来管理用户预期。开始的时候,Host上的VM数量比较少,没有资源争用,因此VM的性能完全可以保证;随后,当一台又一台VM创建出来,对于资源的争用渐渐变的频繁起来。于是VM的性能下降了,用户便会产生抱怨。因此,设置limit可以从一开始就限定VM的性能,也就是让用户一开始就觉得他的VM就应该是这样的性能,当VM数量增加的时候,也不会感觉到性能的下降。当然,Memory Limit设置在什么数值比较合理应该具体情况具体分析。

那为啥不把VM的内存(Configured Size)设小呢?这也是考虑用户心理。有用户会觉得自己的应用就是需要4GB内存,虽然我们经过分析得出的结论是只需要1GB内存就够了,但是为了考虑用户的感受,就给他设置VM的内存为4GB,于是用户看见自己的OS显示有4GB内存,就很满意,但是他不知道的是我们给他的VM设置了1GB 的Memory Limt,这样,既保证了Host的资源可以更合理的利用,又让用户感到满意。

当用户的应用越来越频繁,其对内存的需求增加的时候,这时再来调整Memory limt,以满足其对性能的要求。调整Memory Limt无需停机,而如果开始时虚拟机的内存设的小了,此时调整内存数量就要停机了。设置Memory limt的好处就在于减少了不必要的downtime。

调整memory limit的动作,其实就是通知Hypervisor将某一VM可用的pRAM放大,而无需通知GOS,所以无需GOS重启。(简单的说,就是改Hypervisor,而和GOS无关)

专用名词解释 Configured Size

Configured Size可以翻译成配置内存,就是用户在创建一个VM的时候设定的内存值,也是Guest OS认为自己拥有的内存值。Configured Size在VM看来就是自己可用内存的总量,有的时候我们也称之为Guest Physical Memory。如果

时间: 2024-10-30 10:06:25

浅谈VMware的内存分配的相关文章

浅谈CLR的内存分配和回收机制

相对于C++程序员来说,C#程序员是非常幸运的,至少我们不需要为内存泄漏(Memory Leak)而头疼,不需要负责内存的分配和回收.但这不意味着我们只需要知道new的语法 就可以了,作为一个严肃的C#程序员,我们应该对此有所了解,有助于我们编写性能更好 的代码. 主要内容: CLR的内存分配机制 CLR的回收机制 一.CLR的内存分配机制 .NET Framework 的垃圾回收器管理应用程序的内存分配和释放.每次使用 new 运算 符创建对象时,运行库都从托管堆为该对象分配内存.只要托管堆中

浅谈Python 对象内存占用_python

一切皆是对象 在 Python 一切皆是对象,包括所有类型的常量与变量,整型,布尔型,甚至函数. 参见stackoverflow上的一个问题 Is everything an object in python like ruby 代码中即可以验证: # everythin in python is object def fuction(): return print isinstance(True, object) print isinstance(0, object) print isinst

浅谈C/C++内存泄漏及检测工具

对于一个c/c++程序员来说,内存泄漏是一个常见的也是令人头疼的问题.已经有许多技术被研究出来以应对这个问题,比如Smart Pointer,Garbage Collection等.Smart Pointer技术比较成熟,STL中已经包含支持Smart Pointer的class,但是它的使用似乎并不广泛,而且它也不能解决所有的问题:Garbage Collection技术在Java中已经比较成熟,但是在c/c++领域的发展并不顺畅,虽然很早就有人思考在C++中也加入GC的支持.现实世界就是这样

浅谈Linux的内存管理机制

一 物理内存和虚拟内存 我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念. 物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space). 作为物理内存的扩展,linux会在物理内存不足时,使用交换

浅谈java+内存分配及变量存储位置的区别_java

Java内存分配与管理是Java的核心技术之一,之前我们曾介绍过Java的内存管理与内存泄露以及Java垃圾回收方面的知识,今天我们再次深入Java核心,详细介绍一下Java在内存分配方面的知识.一般Java在内存分配时会涉及到以下区域: ◆寄存器:我们在程序中无法控制 ◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中(new 出来的对象) ◆堆:存放用new产生的数据 ◆静态域:存放在对象中用static定义的静态成员 ◆常量池:存放常量 ◆非RAM存储:硬盘等永久

浅谈C++内存分配及变长数组的动态分配_C 语言

第一部分 C++内存分配 一.关于内存 1.内存分配方式 内存分配方式有三种: (1)从静态存储区域分配.内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在 例如全局变量,static变量. (2)在栈上创建.在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存 储单元自动被释放.栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限. (3) 从堆上分配,亦称动态内存分配.程序在运行的时候用malloc或new申请任意多少的内存,程序员

Linux内核中的内存管理浅谈

 [十月往昔]--Linux内核中的内存管理浅谈 为什么要叫做"十月往昔"呢?是为了纪念我的原博客. 不知道为什么,突然想来一个新的开始--而那个博客存活至今刚好十个月,也有十个月里的文档. 十月往昔,总有一些觉得珍贵的,所以搬迁到这里来. 而这篇文章是在09.04.20-09.04.21里写的. Jason Lee   ------------–cut-line   1.基本框架(此处主要谈页式内存管理) 4G是一个比较敏感的字眼,早些日子,大多数机器(或者说操作系统)支持的内存上限

浅谈redis采用不同内存分配器tcmalloc和jemalloc_Redis

我们知道Redis并没有自己实现内存池,没有在标准的系统内存分配器上再加上自己的东西.所以系统内存分配器的性能及碎片率会对Redis造成一些性能上的影响. 在Redis的 zmalloc.c 源码中,我们可以看到如下代码: /* Double expansion needed for stringification of macro values. */ #define __xstr(s) __str(s) #define __str(s) #s #if defined(USE_TCMALLOC

浅谈js 闭包引起的内存泄露问题

  这篇文章主要介绍了浅谈js 闭包引起的内存泄露问题的相关资料,需要的朋友可以参考下 在js闭包中,可以定义"局部变量",但是外部去调用的话,尤其是反复调用赋值,会造成内存的大量开销.如何防止这种现象的发生?关于闭包还有没有类似的内存或效率问题需要注意?如何去规避? 内存问题可能是如下原因造成: 1. 循环引用导致了内存泄漏 2. 由外部函数调用引起的内存泄漏 避免内存泄漏 1. 打破循环引用 2. 添加另一个闭包 3. 避免闭包自身 以上所述就是本文的全部内容了,希望大家能够喜欢.