中国人工智能学会通讯——从演化计算到演化智能 1.3 演化智能:机遇与挑战

1.3 演化智能:机遇与挑战

从宏观角度来看,利用演化计算的手段构建新型的智能系统——即演化智能——在AI2.0的时代将面临前所未有的机遇。一方面,可演化新型终端的涌现,物联网技术的普及,将极大丰富演化计算的内涵。面向智能城市、智能制造、智能医疗等关键领域,构建涵盖了各类异构终端,甚至人类智能的人机融合演化系统正逐渐成为可能。另一方面,高性能计算、云计算技术的发展,使我们能够以远低于过去的代价在长时间尺度下观测和调整系统演化的趋势,为演化智能系统的实用化奠定了基础。

从微观角度来看,要真正从演化计算走向演化智能,也还需要跨越一系列的技术挑战。例如,由于可接收多源、异构的大数据,对于一个待求解的问题进行精确建模将变得越来越困难。相应的,演化智能需要具备直接从数据中理解问题性质,同时在演化过程中不断积累问题求解经验的能力,从而将其问题求解模式从模型驱动变为数据驱动。又如,大数据几乎不可避免地会含有噪声,尽管演化计算的框架一般被认为对噪声有一定的鲁棒性,但要在求解具体问题时充分规避噪声的负面影响,也需要更深刻的理论和方法支持。此外,一个演化智能系统所面向的问题在规模上必然会远超现有的演化计算技术,且会涉及大量异构的计算单元。因此,如何在适当的计算平台上,设计、实现一个高效的大规模演化智能系统,同样具有重要意义。可以预期,随着在这些方面不断取得突破,演化计算将在迈向演化智能的道路上稳步前进。

南方科技大学教授,博士生导师。在演化计算及其应用领域发表论文 100 余篇,曾获教育部新世纪优秀人才、英国皇家学会牛顿高级学者、教育部自然科学二等奖、中国电子学会自然科学一等奖。担任 IEEE Transactions on Evolutionary Computation 等期刊编委。主要研究方向为大规模演化计算、演化多峰优化、演化学习等。

时间: 2024-09-20 05:34:03

中国人工智能学会通讯——从演化计算到演化智能 1.3 演化智能:机遇与挑战的相关文章

《中国人工智能学会通讯》——9.21 基于任务规划的资源卫星智能管控模式

9.21 基于任务规划的资源卫星智能管控模式 我国目前已建成包括高分.遥感.环境减灾.测绘和试验等多系列资源卫星系统,在轨运行的卫星 20 多颗.随着成像卫星的发展,成像卫星任务规划问题也逐渐引起重视.目前,国内外已经开展了很多成像卫星任务规划问题的研究.下面主要从单星任务规划和多星任务规划两个方面对资源卫星任务规划问题的国内外研究现状进行综述. 单星任务规划 (1) 面向点目标的单星任务规划.Bensanaet al [1-2] 将 SPOT 5 卫星日常任务规划问题抽象为整数规划模型.Wol

中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向 第一个,深度图像分析.目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用.比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能. 第二个,深度视频分析.视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦.当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互. 智

中国人工智能学会通讯——机器学习里的贝叶斯基本理论、模型和算法

非常感 谢周老师给这个机会让我跟大家分享一下.我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法--贝叶斯方法.它是在机器学习和人工智能里比较经典的方法. 类似的报告我之前在CCF ADL讲过,包括去年暑假周老师做学术主任在广州有过一次报告,大家如果想看相关的工作,我们写了一篇文章,正好我今天讲的大部分思想在这个文章里面有一个更系统的讲述,大家可以下去找这篇文章读. 这次分享主要包括三个部分: 第一部分:基本理论.模型和算法 贝叶斯方法基础 正则化贝叶斯推

中国人工智能学会通讯——无智能,不驾驶——面向未来的智能驾驶时代 ( 下 )

到目前为止似乎比较完美,而实际还 存在着一些问题.我们现在看到很多道 路上面,交通标志牌它的分布非常稀疏, 可能每过一两公里才能够检测出来一个 交通标志牌,因为毕竟这个深度学习算 法是目前最完美的,它有时候还会错过 一个交通标志牌,这时候怎么办呢?我 们会发现在路面上也有非常明显的视觉 特征,我只要把路面的这些视觉特征识 别出来进行匹配,其实是有连续的绝对 的视觉参考的.所以我们做的办法是, 把这个路面粘贴起来.这个粘贴的方法 很简单,跟我们手机拍场景图片一样, 我们慢慢移动的时候可以把这个场景

中国人工智能学会通讯——深蓝、沃森与AlphaGo

在 2016 年 3 月 份,正当李 世石与AlphaGo 进行人机大战的时候,我曾经写过 一 篇< 人 工 智 能 的 里 程 碑: 从 深 蓝 到AlphaGo>,自从 1997 年深蓝战胜卡斯帕罗夫之后,随着计算机硬件水平的提高,计算机象棋(包括国际象棋和中国象棋)水平有了很大的提高,达到了可以战胜人类最高棋手的水平.但是,长期以来,在计算机围棋上进展却十分缓慢,在 2006 年引入了蒙特卡洛树搜索方法之后,也只能达到业余 5 段的水平.所以 AlphaGo 战胜韩国棋手李世石,确实是人

中国人工智能学会通讯——着力突破与创新 实现超越与引领

提 要 2016年3月,围棋人机大战的结果,在舆论界激起了惊涛骇浪:在科技界也引起了强烈反响.为了把握人工智能的发展现状和规律,探讨我国人工智能的发展战略,在中国人工智能学会和众多人工智能同行的支持下,由本文作者出面申请了一次高层战略研讨会,这就是以"发展人工智能,引领科技创新"为主题的香山科学会议.与会者同气相求.同心协力,站在国家战略的高度,以纵览全球的视野,通过深入的研讨和论证,凝聚了诸多宝贵的共识,形成了直送中央的<关于加快发展我国人工智能的专家建议>.本文简要介绍

中国人工智能学会通讯——2016机器智能前沿论坛召开

2016 年 12 月 17 日,由中国人工智能学会.中国工程院战略咨询中心主办,今日头条.IEEE<计算科学评论>协办的"2016机器智能前沿论坛"暨"2016 BYTE CUP国际机器学习竞赛颁奖仪式"在中国工程院举办.论坛嘉宾包括中外顶尖的数据挖掘.机器学习,以及自然语言处理方向的专家学者. 与以往不同,本次论坛除介绍机器学习的重大进展和应用外,还着重讨论了机器学习技术在媒体数据上的应用,并为2016 BYTE CUP 国际机器学习竞赛的获奖选手进

中国人工智能学会通讯——Master虽优势较多 但仍有缺陷

近日,Master 在各大围棋网站横扫顶尖职业棋手,随后,谷歌 DeepMind 创始人德米什 • 哈萨比斯在 Twitter 上发布消息,证实了 Master 是 AlphaGo 的升级版.众所周知,围棋困难的地方在于它的估值函数非常不平滑,差一个子盘面就可能天翻地覆:同时状态空间大,也没有全局的结构.这两点加起来,迫使目前计算机只能用穷举法,并且因此进展缓慢.但人能下得好,能在几百个选择中知道哪几个位置值得考虑,说明它的估值函数是有规律的.这些规律远远不是几条简单公式所能概括,但所需的信息量

中国人工智能学会通讯——混合智能概念与新进展

脑科学以阐明脑的工作原理为目标,近年来已成为最重要的科学前沿领域之一.脑功能计算.脑智能模仿再度成为学术界和产业界热议话题[1-4].欧盟.美国.日本相继启动了大型脑研究计划,强有力推动了人们对脑结构.脑功能和脑智能的探索和认识:另一方面,人工智能研究风起云涌,最近一个标志性事件是谷歌的AlphaGo以4:1战胜围棋世界冠军李世石[5],实现了围棋人工智能领域史无前例的突破.2016年9月斯坦福大学发布了<2030年的人工智能与生活>报告[6],全面评估了当前人工智能的进展.挑战.机遇与展望.

中国人工智能学会通讯——人工智能发展的思考

2016 年是充满了纪念意义的特殊的一年:80 年前的 1936 年,"人工智能之父"图灵提出了"可计算机器"的概念,为人工智能乃至现代信息科技奠定了基础:70年前的 1946 年,世界上第一台电子计算机ENIAC 在美国滨州诞生:60 年前的 1956年"人工智能"的概念首次被提出:50 年前的 1966 年,第一次颁发"图灵奖",到目前为止已经有 64 位获奖者:10 年前的2006 年,深度学习概念开始为大家所熟悉,并流