《R语言数据挖掘:实用项目解析》——1.11 apply原理

1.11 apply原理

apply函数以一个数组、一个矩阵或一个数据框作为输入,返回一个数组格式的结果。计算或运算由用户的自定义函数或内置函数定义。margin参数用于指定函数要作用于哪条边以及要保留哪条边。如果使用的数组是一个矩阵,那么可以指定margin是1(将函数应用于行)或2(将函数应用于列)。函数可以是任意用户自定义函数或内置函数,比如mean、median、standard deviation、variance等。这里我们将用Artpiece数据集来执行这个任务:

lapply函数在处理数据框(应用任何函数)时很有用。在R语言中,数据框被当作一个列表,数据框中的变量就是列表中的元素。因此,我们可以利用lapply将一个函数应用到一个数据框中的所有变量上,示例如下:

sapply函数适用于一个列表中的元素,返回的结果是一个向量、矩阵或者列表。当参数是simplify=F时,sapply函数会像lapply函数那样返回一个列表;反之,当参数是simplify=T,即默认参数时,sapply会以简化的格式返回结果:

有时我们想将一个函数应用到一个向量的子集,这些子集通常由其他向量定义(通常是一个因子)。tapply函数输出的是一个矩阵/数组,矩阵/数组中的每个元素是向量的g分组上f的值,g分组作用于行/列名上:


apply函数族还包含其他一些函数,例如:

  • eapply:将一个函数应用于一个环境中的变量。
  • mapply:将一个函数应用于多个列表或多个向量参数。
  • sapply:递归地将一个函数应用于一个列表。
时间: 2024-10-30 19:19:56

《R语言数据挖掘:实用项目解析》——1.11 apply原理的相关文章

《R语言数据挖掘》----1.11 数据清洗

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.11节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.11 数据清洗 数据清洗是数据质量的一部分,数据质量(Data Quality,DQ)的目标如下: 准确性(数据被正确记录). 完整性(所有相关数据都被记录). 唯一性(没有重复的数据记录). 时效性(数据不过时). 一致性(数据是一致的). 数据清洗试图填补

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-

《R语言数据挖掘》----第2章 频繁模式、关联规则和相关规则挖掘 2.1关联规则和关联模式概述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.1节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 第2章 频繁模式.关联规则和相关规则挖掘 本章中,我们将首先学习如何用R语言挖掘频繁模式.关联规则及相关规则.然后,我们将使用基准数据评估所有这些方法以便确定频繁模式和规则的兴趣度.本章内容主要涵盖以下几个主题: 关联规则和关联模式概述 购物篮分析 混合关联规则挖掘

《R语言数据挖掘》——2.2 购物篮分析

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.2 购物篮分析 购物篮分析(Market basket analysis)是用来挖掘消费者已购买的或保存在购物车中物品组合规律的方法.这个概念适用于不同的应用,特别是商店运营.源数据集是一个巨大的数据记录,购物篮分析的目的发现源数据集中不同项之间的关联关系. 2

《R语言数据挖掘》----1.3 数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.3 数据挖掘 数据挖掘就是在数据中发现一个模型,它也称为探索性数据分析,即从数据中发现有用的.有效的.意想不到的且可以理解的知识.有些目标与其他科学,如统计学.人工智能.机器学习和模式识别是相同的.在大多数情况下,数据挖掘通常被视为一个算法问题.聚类.分类.关联

《R语言数据挖掘》----1.6 网络数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.6节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.6 网络数据挖掘 网络挖掘的目的是从网络超链接结构.网页和使用数据来发现有用的信息或知识.网络是作为数据挖掘应用输入的最大数据源之一. 网络数据挖掘基于信息检索.机器学习(Machine Learning,ML).统计学.模式识别和数据挖掘.尽管很多数据挖掘方法

《R语言数据挖掘》----1.9 机器学习

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.9节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.9 机器学习 应用于机器学习算法的数据集称为训练集,它由一组成对的数据(x, y)构成,称为训练样本.成对的数据解释如下: x:这是一个值向量,通常称为特征向量.每个值或者特征,要么是分类变量(这些值来自一组离散值,比如{S, M, L}),要么是数值型. y:

《R语言数据挖掘》----1.13 数据降维

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.13节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.13 数据降维 在分析复杂的多变量数据集时,降低维度往往是必要的,因为这样的数据集总是以高维形式呈现.因此,举例来说,从大量变量来建模的问题和基于定性数据多维分析的数据挖掘任务.同样,有很多方法可以用来对定性数据进行数据降维. 降低维度的目标就是通过两个或者多

《R语言数据挖掘》----1.10 数据属性与描述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.10节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.10 数据属性与描述 属性(attribute)是代表数据对象的某些特征.特性或者维度的字段. 在大多数情况下,数据可以用矩阵建模或者以矩阵形式表示,其中列表示数据属性,行表示数据集中的某些数据记录.对于其他情况,数据不能用矩阵表示,比如文本.时间序列.图像.

《R语言数据挖掘》----1.2 数据源

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.2 数据源 数据充当数据挖掘系统的输入,因此数据存储库是非常重要的.在企业环境中,数据库和日志文件是常见来源:在网络数据挖掘中,网页是数据的来源:连续地从各种传感器中提取数据也是典型的数据源. 这里有一些免费的在线数据源十分有助于学习数据挖掘: 频繁项集挖掘数据