在机器学习中,一般都会按照下面几个步骤:特征提取、数据预处理、特征选择、模型训练、检验优化。那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优化的点,反而特征这边有时候多加一个或者少加一个,最终的结果都会差别很大。
在SparkMLlib中为我们提供了几种特征选择的方法,分别是VectorSlicer
、RFormula
和ChiSqSelector
。
下面就介绍下这三个方法的使用,强烈推荐有时间的把参考的文献都阅读下,会有所收获!
VectorSlicer
这个转换器可以支持用户自定义选择列,可以基于下标索引,也可以基于列名。
- 如果是下标都可以使用setIndices方法
- 如果是列名可以使用setNames方法。使用这个方法的时候,vector字段需要通过AttributeGroup设置每个向量元素的列名。
注意1:可以同时使用setInices和setName
object VectorSlicer {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("VectorSlicer-Test").setMaster("local[2]")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
var sqlContext = new SQLContext(sc)
val data = Array(Row(Vectors.dense(-2.0, 2.3, 0.0,1.0,2.0)))
val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("f1", "f2", "f3","f4","f5").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
val dataRDD = sc.parallelize(data)
val dataset = sqlContext.createDataFrame(dataRDD, StructType(Array(attrGroup.toStructField())))
val slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
slicer.setIndices(Array(0)).setNames(Array("f2"))
val output = slicer.transform(dataset)
println(output.select("userFeatures", "features").first())
}
}
注意2:如果下标和索引重复,会报重复的错:
比如:
slicer.setIndices(Array(1)).setNames(Array("f2"))
那么会遇到报错
Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: VectorSlicer requires indices and names to be disjoint sets of features, but they overlap. indices: [1]. names: [1:f2]
at scala.Predef$.require(Predef.scala:233)
at org.apache.spark.ml.feature.VectorSlicer.getSelectedFeatureIndices(VectorSlicer.scala:137)
at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:108)
at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意3:如果下标不存在
slicer.setIndices(Array(6))
如果数组越界也会报错
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 6
at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3$$anonfun$apply$2.apply(VectorSlicer.scala:110)
at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3$$anonfun$apply$2.apply(VectorSlicer.scala:110)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofInt.foreach(ArrayOps.scala:156)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.mutable.ArrayOps$ofInt.map(ArrayOps.scala:156)
at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3.apply(VectorSlicer.scala:110)
at org.apache.spark.ml.feature.VectorSlicer$$anonfun$3.apply(VectorSlicer.scala:109)
at scala.Option.map(Option.scala:145)
at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:109)
at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意4:如果名称不存在也会报错
Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: getFeatureIndicesFromNames found no feature with name f8 in column StructField(userFeatures,org.apache.spark.mllib.linalg.VectorUDT@f71b0bce,false).
at scala.Predef$.require(Predef.scala:233)
at org.apache.spark.ml.util.MetadataUtils$$anonfun$getFeatureIndicesFromNames$2.apply(MetadataUtils.scala:89)
at org.apache.spark.ml.util.MetadataUtils$$anonfun$getFeatureIndicesFromNames$2.apply(MetadataUtils.scala:88)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
at org.apache.spark.ml.util.MetadataUtils$.getFeatureIndicesFromNames(MetadataUtils.scala:88)
at org.apache.spark.ml.feature.VectorSlicer.getSelectedFeatureIndices(VectorSlicer.scala:129)
at org.apache.spark.ml.feature.VectorSlicer.transform(VectorSlicer.scala:108)
at xingoo.mllib.VectorSlicer$.main(VectorSlicer.scala:35)
at xingoo.mllib.VectorSlicer.main(VectorSlicer.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
注意5:经过特征选择后,特征的顺序与索引和名称的顺序相同
RFormula
这个转换器可以帮助基于R模型,自动生成feature和label。比如说最常用的线性回归,在先用回归中,我们需要把一些离散化的变量变成哑变量,即转变成onehot编码,使之数值化,这个我之前的文章也介绍过,这里就不多说了。
如果不是用这个RFormula,我们可能需要经过几个步骤:
StringIndex...OneHotEncoder...
而且每个特征都要经过这样的变换,非常繁琐。有了RFormula,几乎可以一键把所有的特征问题解决。
id | coutry | hour | clicked |
---|---|---|---|
7 | US | 18 | 1.0 |
8 | CA | 12 | 0.0 |
9 | NZ | 15 | 0.0 |
然后我们只要写一个类似这样的公式clicked ~ country + hour + my_test
,就代表clicked
为label
,coutry、hour、my_test
是三个特征
比如下面的代码:
object RFormulaTest {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("RFormula-Test").setMaster("local[2]")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
var sqlContext = new SQLContext(sc)
val dataset = sqlContext.createDataFrame(Seq(
(7, "US", 18, 1.0,"a"),
(8, "CA", 12, 0.0,"b"),
(9, "NZ", 15, 0.0,"a")
)).toDF("id", "country", "hour", "clicked","my_test")
val formula = new RFormula()
.setFormula("clicked ~ country + hour + my_test")
.setFeaturesCol("features")
.setLabelCol("label")
val output = formula.fit(dataset).transform(dataset)
output.show()
output.select("features", "label").show()
}
}
得到的结果
+---+-------+----+-------+-------+------------------+-----+
| id|country|hour|clicked|my_test| features|label|
+---+-------+----+-------+-------+------------------+-----+
| 7| US| 18| 1.0| a|[0.0,0.0,18.0,1.0]| 1.0|
| 8| CA| 12| 0.0| b|[1.0,0.0,12.0,0.0]| 0.0|
| 9| NZ| 15| 0.0| a|[0.0,1.0,15.0,1.0]| 0.0|
+---+-------+----+-------+-------+------------------+-----+
+------------------+-----+
| features|label|
+------------------+-----+
|[0.0,0.0,18.0,1.0]| 1.0|
|[1.0,0.0,12.0,0.0]| 0.0|
|[0.0,1.0,15.0,1.0]| 0.0|
+------------------+-----+
ChiSqSelector
这个选择器支持基于卡方检验的特征选择,卡方检验是一种计算变量独立性的检验手段。具体的可以参考维基百科,最终的结论就是卡方的值越大,就是我们越想要的特征。因此这个选择器就可以理解为,再计算卡方的值,最后按照这个值排序,选择我们想要的个数的特征。
代码也很简单
object ChiSqSelectorTest {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("ChiSqSelector-Test").setMaster("local[2]")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
var sqlContext = new SQLContext(sc)
val data = Seq(
(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
)
val beanRDD = sc.parallelize(data).map(t3 => Bean(t3._1,t3._2,t3._3))
val df = sqlContext.createDataFrame(beanRDD)
val selector = new ChiSqSelector()
.setNumTopFeatures(2)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("selectedFeatures")
val result = selector.fit(df).transform(df)
result.show()
}
case class Bean(id:Double,features:org.apache.spark.mllib.linalg.Vector,clicked:Double){}
}
这样得到的结果:
+---+------------------+-------+----------------+
| id| features|clicked|selectedFeatures|
+---+------------------+-------+----------------+
|7.0|[0.0,0.0,18.0,1.0]| 1.0| [18.0,1.0]|
|8.0|[0.0,1.0,12.0,0.0]| 0.0| [12.0,0.0]|
|9.0|[1.0,0.0,15.0,0.1]| 0.0| [15.0,0.1]|
+---+------------------+-------+----------------+
总结
下面总结一下三种特征选择的使用场景:
VectorSilcer
,这个选择器适合那种有很多特征,并且明确知道自己想要哪个特征的情况。比如你有一个很全的用户画像系统,每个人有成百上千个特征,但是你指向抽取用户对电影感兴趣相关的特征,因此只要手动选择一下就可以了。RFormula
,这个选择器适合在需要做OneHotEncoder的时候,可以一个简单的代码把所有的离散特征转化成数值化表示。ChiSqSelector
,卡方检验选择器适合在你有比较多的特征,但是不知道这些特征哪个有用,哪个没用,想要通过某种方式帮助你快速筛选特征,那么这个方法很适合。
以上的总结纯属个人看法,不代表官方做法,如果有其他的见解可以留言~ 多交流!
参考
3 如何优化逻辑回归
6 卡方分布
7 皮尔逊卡方检验
8 卡方检验原理
本文转自博客园xingoo的博客,原文链接:推荐系统那点事 —— 基于Spark MLlib的特征选择,如需转载请自行联系原博主。