Real Time Clock (RTC) Drivers for Linux

/*将这篇英文原文的RTC放于此,方便阅读和后续的翻译,仅学习使用!*/

 Real Time Clock  (RTC) Drivers for Linux 

 ======================================= 

When Linux developers talk about a "Real Time Clock"  they usually mean something that tracks wall clock time and is battery backed so that it works even with system power off.  Such clocks will normally
not track the local time zone or daylight savings time -- unless they dual boot with MS-Windows -- but will instead be set to Coordinated Universal Time  (UTC  formerly "Greenwich Mean Time"). 

The newest non-PC hardware tends to just count seconds  like the time (2) system call reports  but RTCs also very commonly represent time using the Gregorian calendar and 24 hour time  as reported
by gmtime (3). 

Linux has two largely-compatible userspace RTC API families you may need to know about: 

  * /dev/rtc  ... is the RTC provided by PC compatible systems  so it's not very portable to non-x86 systems. 
  * /dev/rtc0  /dev/rtc1  ... are part of a framework that's  supported by a wide variety of RTC chips on all systems. 

Programmers need to understand that the PC/AT functionality is not always available  and some systems can do much more.  That is  the RTCs use the same API to make requests in both RTC frameworks
 (using different filenames of course)  but the hardware may not offer the same functionality.  For example  not every RTC is hooked up to an IRQ  so they can 't all issue alarms; and where standard PC RTCs can only issue an alarm up to 24 hours in the future
 other hardware may be able to schedule one any time in the upcoming century. 

 Old PC/AT-Compatible driver:  /dev/rtc 
 -------------------------------------- 

All PCs  (even Alpha machines) have a Real Time Clock built into them . Usually they are built into the chipset of the computer  but some may actually have a Motorola MC146818  (or clone) on the
board. This is the clock that keeps the date and time while your computer is turned off. 

ACPI has standardized that MC146818 functionality  and extended it in a few ways  (enabling longer alarm periods  and wake-from-hibernate). That
functionality is NOT exposed in the old driver. 

However it can also be used to generate signals from a slow 2Hz to a relatively fast 8192Hz  in increments of powers of two. These
signals are reported by interrupt number 8.  (Oh ! So *that* is what IRQ 8 is for...) It can also function as a 24hr alarm
 raising IRQ 8 when the alarm goes off. The alarm can also be programmed to only check any subset of the three programmable
values  meaning that it could be set to ring on the 30th second of the 30th minute of every hour  for example. The clock can
also be set to generate an interrupt upon every clock update  thus generating a 1Hz signal. 

The interrupts are reported via /dev/rtc  (major 10  minor 135  read only character device) in the form of an unsigned long. The
low byte contains the type of interrupt  (update-done  alarm-rang  or periodic) that was raised  and the remaining bytes contain the number of interrupts since the last read.  Status information is reported through the pseudo-file /proc/driver/rtc if the /proc
filesystem was enabled.  The driver has 
built in locking so that only one process is allowed to have the /dev/rtc interface open at a time. 

A user process can monitor these interrupts by doing a read (2) or a select (2) on /dev/rtc -- either will block/stop the user
process until the next interrupt is received. This is useful for things like reasonably high frequency data acquisition where one doesn 't want to burn up 100% CPU by polling gettimeofday etc. etc. 

At high frequencies  or under high loads  the user process should check the number of interrupts received since the last read to
determine if there has been any interrupt "pileup" so to speak. Just for reference  a typical 486-33 running a tight read loop on /dev/rtc will start to suffer occasional interrupt pileup  (i.e. > 1 IRQ event since last read) for frequencies above 1024Hz.
So you really should check the high bytes of the value you read  especially at frequencies above that of the normal timer interrupt  which is 100Hz. 

Programming and/or enabling interrupt frequencies greater than 64Hz is only allowed by root. This is perhaps a bit conservative
 but we don 't want 
an evil user generating lots of IRQs on a slow 386sx-16  where it might have a negative impact on performance. This 64Hz limit can be changed by writing a different value to /proc/sys/dev/rtc/max-user-freq. Note that the interrupt handler is only a few lines
of code to minimize any possibility of this effect. 

Also  if the kernel time is synchronized with an external source  the  kernel will write the time back to the CMOS clock every
11 minutes. In  the process of doing this  the kernel briefly turns off RTC periodic  interrupts  so be aware of this if you are doing serious work. If you don 't synchronize the kernel time with an external source  (via ntp or whatever) then the kernel will
keep its hands off the RTC  allowing you exclusive access to the device for your applications. 

The alarm and/or interrupt frequency are programmed into the RTC via various ioctl (2) calls as listed in  ./include/linux/rtc.h 

Rather than write 50 pages describing the ioctl () and so on  it is perhaps more useful to include a small test program that demonstrates how to use them  and demonstrates the features of the driver.
This is probably a lot more useful to people interested in writing applications that will be using this driver.  See the code at the end of this document. 
(The original /dev/rtc driver was written by Paul Gortmaker.) 

 New portable "RTC Class" drivers:  /dev/rtcN 
 -------------------------------------------- 
Because Linux supports many non-ACPI and non-PC platforms  some of which have more than one RTC style clock  it needed a more
portable solution 
than expecting a single battery-backed MC146818 clone on every system . Accordingly  a new "RTC Class" framework has been defined.  It offers three different userspace interfaces: 
   * /dev/rtcN  ... much the same as the older /dev/rtc interface 
   * /sys/class/rtc/rtcN  ... sysfs attributes support readonly access to some RTC attributes. 
   * /proc/driver/rtc  ... the first RTC  (rtc0) may expose itself using a procfs interface.  More information is  (currently)
shown here than through sysfs. 

The RTC Class framework supports a wide variety of RTCs  ranging from those integrated into embeddable system-on-chip  (SOC) processors
to discrete chips using I2C  SPI  or some other bus to communicate with the host CPU .  There's even support for PC-style RTCs  ... including the features exposed on newer PCs through ACPI. 

The new framework also removes the "one RTC per system" restriction.  For example  maybe the low-power battery-backed RTC is a
discrete I2C chip  but a high functionality RTC is integrated into the SOC.  That system might read the system clock from the discrete RTC  but use the integrated one for all other tasks  because of its greater functionality. 

SYSFS INTERFACE 
--------------- 
The sysfs interface under /sys/class/rtc/rtcN provides access to various rtc attributes without requiring the use of ioctls. All dates and times are in the RTC's timezone  rather than in system time. 

date:        RTC-provided date 
hctosys:     1 if the RTC provided the system time at boot via the CONFIG_RTC_HCTOSYS kernel option  0 otherwise 

max_user_freq:  The maximum interrupt rate an unprivileged user may request from this RTC. 
name:   The name of the RTC corresponding to this sysfs directory 
sice_epoch :  The number of seconds since the epoch according to the RTC 
time:   RTC-provided time 
wakealarm :  The time at which the clock will generate a system wakeup  event. This is a one shot wakeup event  so must be reset after wake if a daily wakeup is required. Format is either seconds since the epoch or  if there's a leading +  seconds in the future. 

IOCTL INTERFACE 
--------------- 

The ioctl () calls supported by /dev/rtc are also supported by the RTC class framework.  However  because the chips and systems are not standardized 
some PC/AT functionality might not be provided.  And in the same way  some newer features -- including those enabled by ACPI -- are exposed by the 
RTC class framework  but can 't be supported by the older driver. 
    * RTC_RD_TIME  RTC_SET_TIME  ... every RTC supports at least reading time  returning the result as a Gregorian calendar
date and 24 hour 
 wall clock time.  To be most useful  this time may also be updated. 

    * RTC_AIE_ON  RTC_AIE_OFF  RTC_ALM_SET  RTC_ALM_READ  ... when the RTC  is connected to an IRQ line  it can often issue an alarm IRQ up to 24 hours in the future.   (Use RTC_WKALM_* by preference.) 

    * RTC_WKALM_SET  RTC_WKALM_RD  ... RTCs that can issue alarms beyond  the next 24 hours use a slightly more powerful API  which supports setting the longer alarm time and enabling its IRQ using a single request  (using the same model as EFI firmware). 

    * RTC_UIE_ON  RTC_UIE_OFF  ... if the RTC offers IRQs  the RTC framework will emulate this mechanism . 

    * RTC_PIE_ON  RTC_PIE_OFF  RTC_IRQP_SET  RTC_IRQP_READ  ... these icotls  are emulated via a kernel hrtimer. 

In many cases  the RTC alarm can be a system wake event  used to force Linux out of a low power sleep state  (or hibernation)
back to a fully operational state.  For example  a system could enter a deep power saving state until it's time to execute some scheduled tasks. 

Note that many of these ioctls are handled by the common rtc-dev interface. Some common examples: 
    * RTC_RD_TIME  RTC_SET_TIME : the read_time/set_time functions will be called with appropriate values. 

    * RTC_ALM_SET  RTC_ALM_READ  RTC_WKALM_SET  RTC_WKALM_RD: gets or sets the alarm rtc_timer. May call the set_alarm driver function. 
    * RTC_IRQP_SET  RTC_IRQP_READ: These are emulated by the generic code. 

    * RTC_PIE_ON  RTC_PIE_OFF: These are also emulated by the generic code. 
If all else fails  check out the rtc-test.c driver! 

-------------------- 8< ---------------- 8< -----------------------------
/*
 *      Real Time Clock Driver Test/Example Program
 *
 *      Compile with :
 *       gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest
 *
 *      Copyright  (C) 1996  Paul Gortmaker.
 *
 *      Released under the GNU General Public License  version 2
 *      included herein by reference.
 *
 */
#include <stdio.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib .h>
#include <errno.h>
/*
 * This expects the new RTC class driver framework  working with
 * clocks that will often not be clones of what the PC-AT had.
 * Use the command line to specify another RTC if you need one.
 */
static const char default_rtc [] = "/dev/rtc0"; 

int main (int argc  char **argv)
{
 int i  fd  retval  irqcount = 0;
unsigned long tmp  data;
 struct rtc_time rtc_tm;
 const char *rtc = default_rtc; 

 switch  (argc)  {
 case 2:
  rtc = argv [1];
  /* FALLTHROUGH */
 case 1:
  break;
 default:
  fprintf (stderr  "usage:  rtctest  [rtcdev]\n");
  return 1;
  } 

 fd = open (rtc  O_RDONLY); 

 if  (fd ==  -1)  {
  perror (rtc);
  exit (errno);
  } 

 fprintf (stderr  "\n\t\t\tRTC Driver Test Example.\n\n");
 /* Turn on update interrupts  (one per second) */
 retval = ioctl (fd  RTC_UIE_ON  0);
 if  (retval == -1)  {
  if  (errno == ENOTTY)  {
   fprintf (stderr
    "\n...Update IRQs not supported.\n");
   goto test_READ;
   }
  perror ("RTC_UIE_ON ioctl");
  exit (errno);
  } 

 fprintf (stderr  "Counting 5 update  (1/sec) interrupts from reading %s:"
   rtc);
 fflush (stderr);
 for  (i=1; i<6; i++)  {
  /* This read will block */
  retval = read (fd  &data  sizeof (unsigned long));
  if  (retval == -1)  {
   perror ("read");
   exit (errno);
   }
  fprintf (stderr  " %d" i);
  fflush (stderr);
  irqcount++;
 } 

 fprintf (stderr  "\nAgain  from using select (2) on /dev/rtc:");
 fflush (stderr);
 for  (i=1; i<6; i++)  {
  struct timeval tv =  {5  0};     /* 5 second timeout on select */
  fd_set readfds; 

  FD_ZERO (&readfds);
  FD_SET (fd  &readfds);
  /* The select will wait until an RTC interrupt happens. */
  retval = select (fd+1  &readfds  NULL  NULL  &tv);
  if  (retval == -1)  {
          perror ("select");
          exit (errno);
   }
  /* This read won 't block unlike the select-less case above. */
  retval = read (fd  &data  sizeof (unsigned long));
  if  (retval == -1)  {
          perror ("read");
          exit (errno);
   }
  fprintf (stderr  " %d" i);
  fflush (stderr);
  irqcount++;
  } 

 /* Turn off update interrupts */
 retval = ioctl (fd  RTC_UIE_OFF  0);
 if  (retval == -1)  {
  perror ("RTC_UIE_OFF ioctl");
  exit (errno);
  } 

test_READ:
 /* Read the RTC time/date */
 retval = ioctl (fd  RTC_RD_TIME  &rtc_tm);
 if  (retval == -1)  {
  perror ("RTC_RD_TIME ioctl");
  exit (errno);
  } 

 fprintf (stderr  "\n\nCurrent RTC date/time is %d-%d-%d  %02d:%02d:%02d.\n"
  rtc_tm .tm_mday  rtc_tm .tm_mon + 1  rtc_tm .tm_year + 1900
  rtc_tm .tm_hour  rtc_tm .tm_min  rtc_tm .tm_sec); 

 /* Set the alarm to 5 sec in the future  and check for rollover */
 rtc_tm .tm_sec += 5;
 if  (rtc_tm .tm_sec >= 60)  {
rtc_tm .tm_sec %= 60;
  rtc_tm .tm_min++;
  }
 if  (rtc_tm .tm_min == 60)  {
  rtc_tm .tm_min = 0;
  rtc_tm .tm_hour++;
  }
 if  (rtc_tm .tm_hour == 24)
  rtc_tm .tm_hour = 0; 

 retval = ioctl (fd  RTC_ALM_SET  &rtc_tm);
 if  (retval == -1)  {
  if  (errno == ENOTTY)  {
   fprintf (stderr
    "\n...Alarm IRQs not supported.\n");
   goto test_PIE;
   }
  perror ("RTC_ALM_SET ioctl");
  exit (errno);
  } 

 /* Read the current alarm settings */
 retval = ioctl (fd  RTC_ALM_READ  &rtc_tm);
 if  (retval == -1)  {
  perror ("RTC_ALM_READ ioctl");
  exit (errno);
  } 

 fprintf (stderr  "Alarm time now set to %02d:%02d:%02d.\n"
  rtc_tm .tm_hour  rtc_tm .tm_min  rtc_tm .tm_sec); 

 /* Enable alarm interrupts */
 retval = ioctl (fd  RTC_AIE_ON  0);
 if  (retval == -1)  {
  perror ("RTC_AIE_ON ioctl");
  exit (errno);
  } 

 fprintf (stderr  "Waiting 5 seconds for alarm ...");
 fflush (stderr);
 /* This blocks until the alarm ring causes an interrupt */
 retval = read (fd  &data  sizeof (unsigned long));
 if  (retval == -1)  {
  perror ("read");
  exit (errno);
  }
 irqcount++;
 fprintf (stderr  " okay. Alarm rang.\n");
/* Disable alarm interrupts */
 retval = ioctl (fd  RTC_AIE_OFF  0);
 if  (retval == -1)  {
  perror ("RTC_AIE_OFF ioctl");
  exit (errno);
  } 

test_PIE :
 /* Read periodic IRQ rate */
 retval = ioctl (fd  RTC_IRQP_READ  &tmp);
 if  (retval == -1)  {
  /* not all RTCs support periodic IRQs */
  if  (errno == ENOTTY)  {
   fprintf (stderr  "\nNo periodic IRQ support\n");
   goto done;
   }
  perror ("RTC_IRQP_READ ioctl");
  exit (errno);
  }
 fprintf (stderr  "\nPeriodic IRQ rate is %ldHz.\n"  tmp); 

 fprintf (stderr  "Counting 20 interrupts at:");
 fflush (stderr); 

 /* The frequencies 128Hz  256Hz   ... 8192Hz are only allowed for root. */
 for  (tmp=2; tmp<=64; tmp*=2)  { 

  retval = ioctl (fd  RTC_IRQP_SET  tmp);
  if  (retval == -1)  {
   /* not all RTCs can change their periodic IRQ rate */
   if  (errno == ENOTTY)  {
    fprintf (stderr
     "\n...Periodic IRQ rate is fixed\n");
    goto done;
    }
   perror ("RTC_IRQP_SET ioctl");
   exit (errno);
   } 

  fprintf (stderr  "\n%ldHz:\t"  tmp);
  fflush (stderr); 

  /* Enable periodic interrupts */
  retval = ioctl (fd  RTC_PIE_ON  0);
  if  (retval == -1)  {
   perror ("RTC_PIE_ON ioctl");
   exit (errno);
   }
for  (i=1; i<21; i++)  {
   /* This blocks */
   retval = read (fd  &data  sizeof (unsigned long));
   if  (retval == -1)  {
    perror ("read");
    exit (errno);
    }
   fprintf (stderr  " %d" i);
   fflush (stderr);
   irqcount++;
   } 

  /* Disable periodic interrupts */
  retval = ioctl (fd  RTC_PIE_OFF  0);
  if  (retval == -1)  {
   perror ("RTC_PIE_OFF ioctl");
   exit (errno);
   }
  } 

done:
 fprintf (stderr  "\n\n\t\t\t *** Test complete ***\n"); 

 close (fd);
 return 0;
} 
时间: 2024-11-03 04:03:52

Real Time Clock (RTC) Drivers for Linux的相关文章

Linux clock命令详解 Linux clock命令怎么用

RTC 是电脑内建的硬件时间,执行这项指令可以显示现在时刻,调整硬件时钟的时间,将系统时间设成与硬件时钟之时间一致,或是把系统时间回存到硬件时钟. 语法 clock [--adjust][--debug][--directisa][--getepoch][--hctosys][--set --date="<日期时间>"] [--setepoch --epoch=< >][--show][--systohc][--test][--utc][--version] 参

RTC子系统内核文档

============================================ 译者:yuanlulu http://blog.csdn.net/yuanlulu 版权没有,但是转载请保留此段声明 ============================================ RTC内核文档 英文原文地址:http://lxr.linux.no/linux+v2.6.38/Documentation/rtc.txt 用户空间使用RTC的例程在:http://lxr.linux

Linux时间子系统之一:clock source(时钟源)【转】

转自:http://blog.csdn.net/droidphone/article/details/7975694 clock source用于为linux内核提供一个时间基线,如果你用linux的date命令获取当前时间,内核会读取当前的clock source,转换并返回合适的时间单位给用户空间.在硬件层,它通常实现为一个由固定时钟频率驱动的计数器,计数器只能单调地增加,直到溢出为止.时钟源是内核计时的基础,系统启动时,内核通过硬件RTC获得当前时间,在这以后,在大多数情况下,内核通过选定

linux下如何写RTC驱动

============================================ 作者:yuanlulu http://blog.csdn.net/yuanlulu 版权没有,但是转载请保留此段声明 ============================================ /drivers/rtc/rtc-test.c下有一个rtc驱动的框架例程. 填写 rtc_class_ops 编写RTC内核驱动的主要步骤就是填写 rtc_class_ops. 这个结构体中使用的st

Linux系统云计算的KVM/QEMU桥接网络设置及kvm资料

  KVM/QEMU桥接网络设置 配置kvm的网络有2种方法.其一,默认方式为用户模式网络(Usermode Networking),数据包由NAT方式通过主机的接口进行传送.其二,使用桥接方式(Bridged Networking),外部的机器可以直接联通到虚拟机,就像联通到你的主机一样. 第一,用户模式 虚拟机可以使用网络服务,但局域网中其他机器包括宿主机无法连接它.比如,它可以浏览网页,但外部机器不能访问架设在它里面的web服务器. 默认的,虚拟机得到的ip空间为10.0.2.0/24,主

RTC系统【转】

http://blog.csdn.net/fanqipin/article/details/8089995  转自:http://www.cnblogs.com/muhuacat/p/5276306.html 一. RTC及驱动简介         RTC即real time clock实时时钟,主要用于为操作系统提供可靠的时间:当系统处于断电 的情况下,RTC记录操作系统时间,并可在电池供电情况下继续正常工作,当系统正常启动后,系统可从RTC读取时间信息,来确保断电后时间运行连续性.    

电源管理ACPI、及APM、GNU/Linux系统下的对应命令使用

rtc: The Real Time Clock (RTC) unit can be operated by the backup battery when the system power is off. The data include the time by second, minute, hour, date, day, month, and year. The RTC unit works with an external 32.768 KHz crystal and can perf

Linux NTP配置详解 (Network Time Protocol)

Network Time Protocol (NTP) 也是RHCE新增的考试要求. 学习的时候也顺便复习了一下如何设置Linux的时间,现在拿出来和大家分享 设置NTP服务器不难但是NTP本身是一个很复杂的协议. 这里只是简要地介绍一下实践方法 和上次一样,下面的实验都在RHEL5上运行   1. 时间和时区 如果有人问你说现在几点? 你看了看表回答他说晚上8点了. 这样回答看上去没有什么问题,但是如果问你的这个人在欧洲的话那么你的回答就会让他很疑惑,因为他那里还太阳当空呢. 这里就有产生了一

Linux 时钟精度 与 PostgreSQL auto_explain (explain timing 时钟开销估算)

标签 PostgreSQL , auto_explain , pg_test_timing , 时钟 , tsc , hpet , acpi , acpi_pm , Linux 背景 我们在诊断SQL的执行计划时,通常会用explain analyze,analyze有几个开关,其中一个是timing,它会帮你记录下SQL每个NODE的执行时间. 但是这部分是有一定的性能开销的,而且这个开销与操作系统的时钟获取接口有关. 有时,你会发现explain analyze的执行时间远大于真实的执行时间